1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
media / filters / h26x_annex_b_bitstream_builder.cc [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/filters/h26x_annex_b_bitstream_builder.h"
#include "base/bits.h"
#include "base/containers/span.h"
#include "base/numerics/byte_conversions.h"
namespace media {
H26xAnnexBBitstreamBuilder::H26xAnnexBBitstreamBuilder(
bool insert_emulation_prevention_bytes)
: insert_emulation_prevention_bytes_(insert_emulation_prevention_bytes) {
Reset();
}
H26xAnnexBBitstreamBuilder::~H26xAnnexBBitstreamBuilder() = default;
void H26xAnnexBBitstreamBuilder::Reset() {
data_ = base::HeapArray<uint8_t>();
pos_ = 0;
bits_in_buffer_ = 0;
reg_ = 0;
Grow();
bits_left_in_reg_ = kRegBitSize;
in_nalu_ = false;
}
void H26xAnnexBBitstreamBuilder::Grow() {
auto grown = base::HeapArray<uint8_t>::Uninit(data_.size() + kGrowBytes);
// The first `pos_` bytes in `data_` are initialized. Copy them but don't read
// from the uninitialized stuff after it.
grown.copy_prefix_from(data_.first(pos_));
data_ = std::move(grown);
}
void H26xAnnexBBitstreamBuilder::FlushReg() {
// Flush all bytes that have at least one bit cached, but not more
// (on Flush(), reg_ may not be full).
size_t bits_in_reg = kRegBitSize - bits_left_in_reg_;
if (bits_in_reg == 0u) {
return;
}
size_t bytes_in_reg = base::bits::AlignUp(bits_in_reg, size_t{8}) / 8u;
reg_ <<= (kRegBitSize - bits_in_reg);
// Convert to MSB and append as such to the stream.
std::array<uint8_t, 8> reg_be = base::U64ToBigEndian(reg_);
if (insert_emulation_prevention_bytes_ && in_nalu_) {
// The EPB only works on complete bytes being flushed.
CHECK_EQ(bits_in_reg % 8u, 0u);
// Insert emulation prevention bytes (spec 7.3.1).
constexpr uint8_t kEmulationByte = 0x03u;
for (size_t i = 0; i < bytes_in_reg; ++i) {
// This will possibly check the NALU header byte. However the
// CHECK_NE(nalu_type, 0) makes sure that it is not 0.
if (pos_ >= 2u && data_[pos_ - 2u] == 0 && data_[pos_ - 1u] == 0u &&
reg_be[i] <= kEmulationByte) {
if (pos_ + 1u > data_.size()) {
Grow();
}
data_[pos_++] = kEmulationByte;
bits_in_buffer_ += 8u;
}
if (pos_ + 1u > data_.size()) {
Grow();
}
data_[pos_++] = reg_be[i];
bits_in_buffer_ += 8u;
}
} else {
// Make sure we have enough space.
if (pos_ + bytes_in_reg > data_.size()) {
Grow();
}
data_.subspan(pos_).copy_prefix_from(
base::span(reg_be).first(bytes_in_reg));
bits_in_buffer_ = pos_ * 8u + bits_in_reg;
pos_ += bytes_in_reg;
}
reg_ = 0u;
bits_left_in_reg_ = kRegBitSize;
}
void H26xAnnexBBitstreamBuilder::AppendU64(size_t num_bits, uint64_t val) {
CHECK_LE(num_bits, kRegBitSize);
while (num_bits > 0u) {
if (bits_left_in_reg_ == 0u) {
FlushReg();
}
uint64_t bits_to_write =
num_bits > bits_left_in_reg_ ? bits_left_in_reg_ : num_bits;
uint64_t val_to_write = (val >> (num_bits - bits_to_write));
if (bits_to_write < 64u) {
val_to_write &= ((1ull << bits_to_write) - 1);
reg_ <<= bits_to_write;
reg_ |= val_to_write;
} else {
reg_ = val_to_write;
}
num_bits -= bits_to_write;
bits_left_in_reg_ -= bits_to_write;
}
}
void H26xAnnexBBitstreamBuilder::AppendBool(bool val) {
if (bits_left_in_reg_ == 0u) {
FlushReg();
}
reg_ <<= 1;
reg_ |= (static_cast<uint64_t>(val) & 1u);
--bits_left_in_reg_;
}
void H26xAnnexBBitstreamBuilder::AppendSE(int val) {
if (val > 0)
AppendUE(val * 2 - 1);
else
AppendUE(-val * 2);
}
void H26xAnnexBBitstreamBuilder::AppendUE(unsigned int val) {
size_t num_zeros = 0u;
unsigned int v = val + 1u;
while (v > 1) {
v >>= 1;
++num_zeros;
}
AppendBits(num_zeros, 0);
AppendBits(num_zeros + 1, val + 1u);
}
#define DCHECK_FINISHED() \
DCHECK_EQ(bits_left_in_reg_, kRegBitSize) << "Pending bits not yet written " \
"to the buffer, call " \
"FinishNALU() first."
void H26xAnnexBBitstreamBuilder::BeginNALU(H264NALU::Type nalu_type,
int nal_ref_idc) {
DCHECK(!in_nalu_);
DCHECK_FINISHED();
DCHECK_LE(nalu_type, H264NALU::kEOStream);
DCHECK_GE(nal_ref_idc, 0);
DCHECK_LE(nal_ref_idc, 3);
AppendBits(32, 0x00000001);
Flush();
in_nalu_ = true;
AppendBits(1, 0); // forbidden_zero_bit
AppendBits(2, nal_ref_idc);
CHECK_NE(nalu_type, 0);
AppendBits(5, nalu_type);
}
void H26xAnnexBBitstreamBuilder::BeginNALU(H265NALU::Type nalu_type) {
DCHECK(!in_nalu_);
DCHECK_FINISHED();
DCHECK_LE(nalu_type, H265NALU::Type::EOS_NUT);
AppendBits(32, 0x00000001);
Flush();
in_nalu_ = true;
AppendBits(1, 0); // forbidden_zero_bit
AppendBits(6, nalu_type); // nal_unit_type
AppendBits(6, 0); // nuh_layer_id
AppendBits(3, 1); // nuh_temporal_id_plus_1
}
void H26xAnnexBBitstreamBuilder::FinishNALU() {
// RBSP stop one bit.
AppendBits(1, 1);
// Byte-alignment zero bits.
AppendBits(bits_left_in_reg_ % 8, 0);
Flush();
in_nalu_ = false;
}
void H26xAnnexBBitstreamBuilder::Flush() {
if (bits_left_in_reg_ != kRegBitSize)
FlushReg();
}
size_t H26xAnnexBBitstreamBuilder::BitsInBuffer() const {
return bits_in_buffer_;
}
size_t H26xAnnexBBitstreamBuilder::BytesInBuffer() const {
DCHECK_FINISHED();
return pos_;
}
const uint8_t* H26xAnnexBBitstreamBuilder::data() const {
DCHECK(!data_.empty());
DCHECK_FINISHED();
return data_.data();
}
} // namespace media