1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
media / filters / video_cadence_estimator.cc [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/filters/video_cadence_estimator.h"
#include <algorithm>
#include <cmath>
#include <iterator>
#include <limits>
#include <numeric>
#include <string>
#include "base/logging.h"
#include "base/metrics/histogram_macros.h"
#include "media/base/media_switches.h"
namespace media {
// To prevent oscillation in and out of cadence or between cadence values, we
// require some time to elapse before a cadence switch is accepted.
const int kMinimumCadenceDurationMs = 100;
// The numbers are used to decide whether the current video is variable FPS or
// constant FPS. If ratio of the sample deviation and the render length is
// above |kVariableFPSFactor|, then it is recognized as a variable FPS, and if
// the ratio is below |kConstantFPSFactor|, then it is recognized as a constant
// FPS, and if the ratio is in between the two factors, then we do not change
// previous recognition.
const double kVariableFPSFactor = 0.55;
const double kConstantFPSFactor = 0.45;
// Records the number of cadence changes to UMA.
static void HistogramCadenceChangeCount(int cadence_changes) {
const int kCadenceChangeMax = 10;
UMA_HISTOGRAM_CUSTOM_COUNTS("Media.VideoRenderer.CadenceChanges",
cadence_changes, 1, kCadenceChangeMax,
kCadenceChangeMax);
}
// Construct a Cadence vector, a vector of integers satisfying the following
// conditions:
// 1. Size is |n|.
// 2. Sum of entries is |k|.
// 3. Each entry is in {|k|/|n|, |k|/|n| + 1}.
// 4. Distribution of |k|/|n| and |k|/|n| + 1 is as even as possible.
VideoCadenceEstimator::Cadence ConstructCadence(int k, int n) {
const int quotient = k / n;
std::vector<int> output(n, 0);
// Fill the vector entries with |quotient| or |quotient + 1|, and make sure
// the two values are distributed as evenly as possible.
int target_accumulate = 0;
int actual_accumulate = 0;
for (int i = 0; i < n; ++i) {
// After each loop
// target_accumulate = (i + 1) * k
// actual_accumulate = \sum_{j = 0}^i {n * V[j]} where V is output vector
// We want to make actual_accumulate as close to target_accumulate as
// possible.
// One exception is that in case k < n, we always want the vector to start
// with 1 to make sure the first frame is always rendered.
// (To avoid float calculation, we use scaled version of accumulated count)
target_accumulate += k;
const int target_current = target_accumulate - actual_accumulate;
if ((i == 0 && k < n) || target_current * 2 >= n * (quotient * 2 + 1)) {
output[i] = quotient + 1;
} else {
output[i] = quotient;
}
actual_accumulate += output[i] * n;
}
return output;
}
VideoCadenceEstimator::Cadence ConstructSimpleCadence(
double perfect_cadence,
base::TimeDelta max_acceptable_drift,
base::TimeDelta* time_until_max_drift) {
int cadence_value = round(perfect_cadence);
if (cadence_value < 0) {
return VideoCadenceEstimator::Cadence();
}
if (cadence_value == 0) {
cadence_value = 1;
}
VideoCadenceEstimator::Cadence result = ConstructCadence(cadence_value, 1);
// The computation for time_until_max_drift below is equivalent to
// time_until_max_drift = render_interval * (max_acceptable_drift /
// abs(frame_duration - render_interval))
const double error = std::fabs(1.0 - perfect_cadence / cadence_value);
*time_until_max_drift = max_acceptable_drift / error;
return result;
}
VideoCadenceEstimator::VideoCadenceEstimator(
base::TimeDelta minimum_time_until_max_drift)
: cadence_hysteresis_threshold_(
base::Milliseconds(kMinimumCadenceDurationMs)),
minimum_time_until_max_drift_(minimum_time_until_max_drift),
is_variable_frame_rate_(false) {
Reset();
}
VideoCadenceEstimator::~VideoCadenceEstimator() = default;
void VideoCadenceEstimator::Reset() {
cadence_.clear();
pending_cadence_.clear();
cadence_changes_ = render_intervals_cadence_held_ = 0;
first_update_call_ = true;
}
bool VideoCadenceEstimator::UpdateCadenceEstimate(
base::TimeDelta render_interval,
base::TimeDelta frame_duration,
base::TimeDelta frame_duration_deviation,
base::TimeDelta max_acceptable_drift) {
DCHECK_GT(render_interval, base::TimeDelta());
DCHECK_GT(frame_duration, base::TimeDelta());
bool render_interval_changed = false;
constexpr float kRenderIntervalChangeThreshold = 0.1;
if (last_render_interval_ > base::TimeDelta() &&
(last_render_interval_ - render_interval).magnitude() >
last_render_interval_ * kRenderIntervalChangeThreshold) {
render_interval_changed = true;
}
last_render_interval_ = render_interval;
if (frame_duration_deviation > kVariableFPSFactor * render_interval) {
is_variable_frame_rate_ = true;
} else if (frame_duration_deviation < kConstantFPSFactor * render_interval) {
is_variable_frame_rate_ = false;
}
// Variable FPS detected, turn off Cadence by force.
if (is_variable_frame_rate_) {
render_intervals_cadence_held_ = 0;
if (!cadence_.empty()) {
cadence_.clear();
return true;
}
return false;
}
base::TimeDelta time_until_max_drift;
// See if we can find a cadence which fits the data.
Cadence new_cadence =
CalculateCadence(render_interval, frame_duration, max_acceptable_drift,
&time_until_max_drift);
// If this is the first time UpdateCadenceEstimate() has been called,
// initialize the histogram with a zero count for cadence changes; this
// allows us to track the number of playbacks which have cadence at all.
if (first_update_call_) {
DCHECK_EQ(cadence_changes_, 0);
first_update_call_ = false;
HistogramCadenceChangeCount(0);
}
// Update the cadence immediately if the render interval has changed.
if (render_interval_changed && new_cadence != cadence_) {
UpdateCadenceInternal(new_cadence, time_until_max_drift);
return true;
}
// If nothing changed, do nothing.
if (new_cadence == cadence_) {
// Clear cadence hold to pending values from accumulating incorrectly.
render_intervals_cadence_held_ = 0;
return false;
}
// Wait until enough render intervals have elapsed before accepting the
// cadence change. Prevents oscillation of the cadence selection.
bool update_pending_cadence = true;
if (new_cadence == pending_cadence_ ||
cadence_hysteresis_threshold_ <= render_interval) {
if (++render_intervals_cadence_held_ * render_interval >=
cadence_hysteresis_threshold_) {
UpdateCadenceInternal(new_cadence, time_until_max_drift);
return true;
}
update_pending_cadence = false;
}
DVLOG(2) << "Hysteresis prevented cadence switch: "
<< CadenceToString(cadence_) << " -> "
<< CadenceToString(new_cadence);
if (update_pending_cadence) {
pending_cadence_.swap(new_cadence);
render_intervals_cadence_held_ = 1;
}
return false;
}
void VideoCadenceEstimator::UpdateCadenceInternal(
Cadence new_cadence,
base::TimeDelta time_until_max_drift) {
DVLOG(1) << "Cadence switch: " << CadenceToString(cadence_) << " -> "
<< CadenceToString(new_cadence)
<< " :: Time until drift exceeded: " << time_until_max_drift;
cadence_.swap(new_cadence);
// Note: Because this class is transitively owned by a garbage collected
// object, WebMediaPlayer, we log cadence changes as they are encountered.
HistogramCadenceChangeCount(++cadence_changes_);
}
int VideoCadenceEstimator::GetCadenceForFrame(uint64_t frame_number) const {
DCHECK(has_cadence());
return cadence_[frame_number % cadence_.size()];
}
bool VideoCadenceEstimator::HasSimpleCadence(
base::TimeDelta render_interval,
base::TimeDelta frame_duration,
base::TimeDelta minimum_time_until_max_drift) {
if (render_interval.is_zero()) {
return false;
}
const double perfect_cadence = frame_duration / render_interval;
base::TimeDelta time_until_max_drift;
auto cadence = ConstructSimpleCadence(perfect_cadence, render_interval,
&time_until_max_drift);
return !cadence.empty() &&
time_until_max_drift >= minimum_time_until_max_drift;
}
VideoCadenceEstimator::Cadence VideoCadenceEstimator::CalculateCadence(
base::TimeDelta render_interval,
base::TimeDelta frame_duration,
base::TimeDelta max_acceptable_drift,
base::TimeDelta* time_until_max_drift) const {
// The perfect cadence is the number of render intervals per frame.
const double perfect_cadence = frame_duration / render_interval;
// This case is very simple, just return a single frame cadence, because it
// is impossible for us to accumulate drift as large as max_acceptable_drift
// within minimum_time_until_max_drift.
if (max_acceptable_drift >= minimum_time_until_max_drift_) {
return ConstructSimpleCadence(perfect_cadence, max_acceptable_drift,
time_until_max_drift);
}
// We want to construct a cadence pattern to approximate the perfect cadence
// while ensuring error doesn't accumulate too quickly.
const double drift_ratio =
max_acceptable_drift / minimum_time_until_max_drift_;
const double minimum_acceptable_cadence =
perfect_cadence / (1.0 + drift_ratio);
const double maximum_acceptable_cadence =
perfect_cadence / (1.0 - drift_ratio);
// We've arbitrarily chosen the maximum allowable cadence length as 5. It's
// proven sufficient to support most standard frame and render rates, while
// being small enough that small frame and render timing errors don't render
// it useless.
const int kMaxCadenceSize = 5;
double best_error = 0;
int best_n = 0;
int best_k = 0;
for (int n = 1; n <= kMaxCadenceSize; ++n) {
// A cadence pattern only exists if there exists an integer K such that K/N
// is between |minimum_acceptable_cadence| and |maximum_acceptable_cadence|.
// The best pattern is the one with the smallest error over time relative to
// the |perfect_cadence|.
if (std::floor(minimum_acceptable_cadence * n) <
std::floor(maximum_acceptable_cadence * n)) {
const int k = round(perfect_cadence * n);
const double error = std::fabs(1.0 - perfect_cadence * n / k);
// Prefer the shorter cadence pattern unless a longer one "significantly"
// reduces the error.
if (!best_n || error < best_error * 0.99) {
best_error = error;
best_k = k;
best_n = n;
}
}
}
if (!best_n) {
Cadence cadence = ConstructSimpleCadence(
perfect_cadence, max_acceptable_drift, time_until_max_drift);
if (!cadence.empty() &&
*time_until_max_drift >= minimum_time_until_max_drift_) {
return cadence;
}
return Cadence();
}
// If we've found a solution.
Cadence best_result = ConstructCadence(best_k, best_n);
*time_until_max_drift = max_acceptable_drift / best_error;
return best_result;
}
std::string VideoCadenceEstimator::CadenceToString(
const Cadence& cadence) const {
if (cadence.empty())
return std::string("[]");
std::ostringstream os;
os << "[";
std::copy(cadence.begin(), cadence.end() - 1,
std::ostream_iterator<int>(os, ":"));
os << cadence.back() << "]";
return os.str();
}
double VideoCadenceEstimator::avg_cadence_for_testing() const {
if (!has_cadence())
return 0.0;
int sum = std::accumulate(begin(cadence_), end(cadence_), 0);
return static_cast<double>(sum) / cadence_.size();
}
} // namespace media