1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330

media / filters / video_cadence_estimator.cc [blame]

// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/filters/video_cadence_estimator.h"

#include <algorithm>
#include <cmath>
#include <iterator>
#include <limits>
#include <numeric>
#include <string>

#include "base/logging.h"
#include "base/metrics/histogram_macros.h"
#include "media/base/media_switches.h"

namespace media {

// To prevent oscillation in and out of cadence or between cadence values, we
// require some time to elapse before a cadence switch is accepted.
const int kMinimumCadenceDurationMs = 100;

// The numbers are used to decide whether the current video is variable FPS or
// constant FPS. If ratio of the sample deviation and the render length is
// above |kVariableFPSFactor|, then it is recognized as a variable FPS, and if
// the ratio is below |kConstantFPSFactor|, then it is recognized as a constant
// FPS, and if the ratio is in between the two factors, then we do not change
// previous recognition.
const double kVariableFPSFactor = 0.55;
const double kConstantFPSFactor = 0.45;

// Records the number of cadence changes to UMA.
static void HistogramCadenceChangeCount(int cadence_changes) {
  const int kCadenceChangeMax = 10;
  UMA_HISTOGRAM_CUSTOM_COUNTS("Media.VideoRenderer.CadenceChanges",
                              cadence_changes, 1, kCadenceChangeMax,
                              kCadenceChangeMax);
}

// Construct a Cadence vector, a vector of integers satisfying the following
// conditions:
// 1. Size is |n|.
// 2. Sum of entries is |k|.
// 3. Each entry is in {|k|/|n|, |k|/|n| + 1}.
// 4. Distribution of |k|/|n| and |k|/|n| + 1 is as even as possible.
VideoCadenceEstimator::Cadence ConstructCadence(int k, int n) {
  const int quotient = k / n;
  std::vector<int> output(n, 0);

  // Fill the vector entries with |quotient| or |quotient + 1|, and make sure
  // the two values are distributed as evenly as possible.
  int target_accumulate = 0;
  int actual_accumulate = 0;
  for (int i = 0; i < n; ++i) {
    // After each loop
    // target_accumulate = (i + 1) * k
    // actual_accumulate = \sum_{j = 0}^i {n * V[j]} where V is output vector
    // We want to make actual_accumulate as close to target_accumulate as
    // possible.
    // One exception is that in case k < n, we always want the vector to start
    // with 1 to make sure the first frame is always rendered.
    // (To avoid float calculation, we use scaled version of accumulated count)
    target_accumulate += k;
    const int target_current = target_accumulate - actual_accumulate;
    if ((i == 0 && k < n) || target_current * 2 >= n * (quotient * 2 + 1)) {
      output[i] = quotient + 1;
    } else {
      output[i] = quotient;
    }
    actual_accumulate += output[i] * n;
  }

  return output;
}

VideoCadenceEstimator::Cadence ConstructSimpleCadence(
    double perfect_cadence,
    base::TimeDelta max_acceptable_drift,
    base::TimeDelta* time_until_max_drift) {
  int cadence_value = round(perfect_cadence);
  if (cadence_value < 0) {
    return VideoCadenceEstimator::Cadence();
  }
  if (cadence_value == 0) {
    cadence_value = 1;
  }
  VideoCadenceEstimator::Cadence result = ConstructCadence(cadence_value, 1);

  // The computation for time_until_max_drift below is equivalent to
  // time_until_max_drift = render_interval * (max_acceptable_drift /
  // abs(frame_duration - render_interval))
  const double error = std::fabs(1.0 - perfect_cadence / cadence_value);
  *time_until_max_drift = max_acceptable_drift / error;
  return result;
}

VideoCadenceEstimator::VideoCadenceEstimator(
    base::TimeDelta minimum_time_until_max_drift)
    : cadence_hysteresis_threshold_(
          base::Milliseconds(kMinimumCadenceDurationMs)),
      minimum_time_until_max_drift_(minimum_time_until_max_drift),
      is_variable_frame_rate_(false) {
  Reset();
}

VideoCadenceEstimator::~VideoCadenceEstimator() = default;

void VideoCadenceEstimator::Reset() {
  cadence_.clear();
  pending_cadence_.clear();
  cadence_changes_ = render_intervals_cadence_held_ = 0;
  first_update_call_ = true;
}

bool VideoCadenceEstimator::UpdateCadenceEstimate(
    base::TimeDelta render_interval,
    base::TimeDelta frame_duration,
    base::TimeDelta frame_duration_deviation,
    base::TimeDelta max_acceptable_drift) {
  DCHECK_GT(render_interval, base::TimeDelta());
  DCHECK_GT(frame_duration, base::TimeDelta());

  bool render_interval_changed = false;
  constexpr float kRenderIntervalChangeThreshold = 0.1;
  if (last_render_interval_ > base::TimeDelta() &&
      (last_render_interval_ - render_interval).magnitude() >
          last_render_interval_ * kRenderIntervalChangeThreshold) {
    render_interval_changed = true;
  }
  last_render_interval_ = render_interval;

  if (frame_duration_deviation > kVariableFPSFactor * render_interval) {
    is_variable_frame_rate_ = true;
  } else if (frame_duration_deviation < kConstantFPSFactor * render_interval) {
    is_variable_frame_rate_ = false;
  }

  // Variable FPS detected, turn off Cadence by force.
  if (is_variable_frame_rate_) {
    render_intervals_cadence_held_ = 0;
    if (!cadence_.empty()) {
      cadence_.clear();
      return true;
    }
    return false;
  }

  base::TimeDelta time_until_max_drift;

  // See if we can find a cadence which fits the data.
  Cadence new_cadence =
      CalculateCadence(render_interval, frame_duration, max_acceptable_drift,
                       &time_until_max_drift);

  // If this is the first time UpdateCadenceEstimate() has been called,
  // initialize the histogram with a zero count for cadence changes; this
  // allows us to track the number of playbacks which have cadence at all.
  if (first_update_call_) {
    DCHECK_EQ(cadence_changes_, 0);
    first_update_call_ = false;
    HistogramCadenceChangeCount(0);
  }

  // Update the cadence immediately if the render interval has changed.
  if (render_interval_changed && new_cadence != cadence_) {
    UpdateCadenceInternal(new_cadence, time_until_max_drift);
    return true;
  }

  // If nothing changed, do nothing.
  if (new_cadence == cadence_) {
    // Clear cadence hold to pending values from accumulating incorrectly.
    render_intervals_cadence_held_ = 0;
    return false;
  }

  // Wait until enough render intervals have elapsed before accepting the
  // cadence change.  Prevents oscillation of the cadence selection.
  bool update_pending_cadence = true;
  if (new_cadence == pending_cadence_ ||
      cadence_hysteresis_threshold_ <= render_interval) {
    if (++render_intervals_cadence_held_ * render_interval >=
        cadence_hysteresis_threshold_) {
      UpdateCadenceInternal(new_cadence, time_until_max_drift);
      return true;
    }

    update_pending_cadence = false;
  }

  DVLOG(2) << "Hysteresis prevented cadence switch: "
           << CadenceToString(cadence_) << " -> "
           << CadenceToString(new_cadence);

  if (update_pending_cadence) {
    pending_cadence_.swap(new_cadence);
    render_intervals_cadence_held_ = 1;
  }

  return false;
}

void VideoCadenceEstimator::UpdateCadenceInternal(
    Cadence new_cadence,
    base::TimeDelta time_until_max_drift) {
  DVLOG(1) << "Cadence switch: " << CadenceToString(cadence_) << " -> "
           << CadenceToString(new_cadence)
           << " :: Time until drift exceeded: " << time_until_max_drift;
  cadence_.swap(new_cadence);

  // Note: Because this class is transitively owned by a garbage collected
  // object, WebMediaPlayer, we log cadence changes as they are encountered.
  HistogramCadenceChangeCount(++cadence_changes_);
}

int VideoCadenceEstimator::GetCadenceForFrame(uint64_t frame_number) const {
  DCHECK(has_cadence());
  return cadence_[frame_number % cadence_.size()];
}

bool VideoCadenceEstimator::HasSimpleCadence(
    base::TimeDelta render_interval,
    base::TimeDelta frame_duration,
    base::TimeDelta minimum_time_until_max_drift) {
  if (render_interval.is_zero()) {
    return false;
  }
  const double perfect_cadence = frame_duration / render_interval;
  base::TimeDelta time_until_max_drift;
  auto cadence = ConstructSimpleCadence(perfect_cadence, render_interval,
                                        &time_until_max_drift);
  return !cadence.empty() &&
         time_until_max_drift >= minimum_time_until_max_drift;
}

VideoCadenceEstimator::Cadence VideoCadenceEstimator::CalculateCadence(
    base::TimeDelta render_interval,
    base::TimeDelta frame_duration,
    base::TimeDelta max_acceptable_drift,
    base::TimeDelta* time_until_max_drift) const {
  // The perfect cadence is the number of render intervals per frame.
  const double perfect_cadence = frame_duration / render_interval;

  // This case is very simple, just return a single frame cadence, because it
  // is impossible for us to accumulate drift as large as max_acceptable_drift
  // within minimum_time_until_max_drift.
  if (max_acceptable_drift >= minimum_time_until_max_drift_) {
    return ConstructSimpleCadence(perfect_cadence, max_acceptable_drift,
                                  time_until_max_drift);
  }

  // We want to construct a cadence pattern to approximate the perfect cadence
  // while ensuring error doesn't accumulate too quickly.
  const double drift_ratio =
      max_acceptable_drift / minimum_time_until_max_drift_;
  const double minimum_acceptable_cadence =
      perfect_cadence / (1.0 + drift_ratio);
  const double maximum_acceptable_cadence =
      perfect_cadence / (1.0 - drift_ratio);

  // We've arbitrarily chosen the maximum allowable cadence length as 5. It's
  // proven sufficient to support most standard frame and render rates, while
  // being small enough that small frame and render timing errors don't render
  // it useless.
  const int kMaxCadenceSize = 5;

  double best_error = 0;
  int best_n = 0;
  int best_k = 0;
  for (int n = 1; n <= kMaxCadenceSize; ++n) {
    // A cadence pattern only exists if there exists an integer K such that K/N
    // is between |minimum_acceptable_cadence| and |maximum_acceptable_cadence|.
    // The best pattern is the one with the smallest error over time relative to
    // the |perfect_cadence|.
    if (std::floor(minimum_acceptable_cadence * n) <
        std::floor(maximum_acceptable_cadence * n)) {
      const int k = round(perfect_cadence * n);

      const double error = std::fabs(1.0 - perfect_cadence * n / k);

      // Prefer the shorter cadence pattern unless a longer one "significantly"
      // reduces the error.
      if (!best_n || error < best_error * 0.99) {
        best_error = error;
        best_k = k;
        best_n = n;
      }
    }
  }

  if (!best_n) {
    Cadence cadence = ConstructSimpleCadence(
        perfect_cadence, max_acceptable_drift, time_until_max_drift);
    if (!cadence.empty() &&
        *time_until_max_drift >= minimum_time_until_max_drift_) {
      return cadence;
    }
    return Cadence();
  }

  // If we've found a solution.
  Cadence best_result = ConstructCadence(best_k, best_n);
  *time_until_max_drift = max_acceptable_drift / best_error;

  return best_result;
}

std::string VideoCadenceEstimator::CadenceToString(
    const Cadence& cadence) const {
  if (cadence.empty())
    return std::string("[]");

  std::ostringstream os;
  os << "[";
  std::copy(cadence.begin(), cadence.end() - 1,
            std::ostream_iterator<int>(os, ":"));
  os << cadence.back() << "]";
  return os.str();
}

double VideoCadenceEstimator::avg_cadence_for_testing() const {
  if (!has_cadence())
    return 0.0;

  int sum = std::accumulate(begin(cadence_), end(cadence_), 0);
  return static_cast<double>(sum) / cadence_.size();
}

}  // namespace media