1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
media / filters / wsola_internals.cc [blame]
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/filters/wsola_internals.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <limits>
#include <memory>
#include <numbers>
#include "base/check_op.h"
#include "build/build_config.h"
#include "media/base/audio_bus.h"
#if defined(ARCH_CPU_X86_FAMILY)
#define USE_SIMD 1
#include <xmmintrin.h>
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#define USE_SIMD 1
#include <arm_neon.h>
#endif
namespace media {
namespace internal {
bool InInterval(int n, Interval q) {
return n >= q.first && n <= q.second;
}
float MultiChannelSimilarityMeasure(const float* dot_prod_a_b,
const float* energy_a,
const float* energy_b,
int channels) {
const float kEpsilon = 1e-12f;
float similarity_measure = 0.0f;
for (int n = 0; n < channels; ++n) {
similarity_measure +=
dot_prod_a_b[n] / std::sqrt(energy_a[n] * energy_b[n] + kEpsilon);
}
return similarity_measure;
}
void MultiChannelDotProduct(const AudioBus* a,
int frame_offset_a,
const AudioBus* b,
int frame_offset_b,
int num_frames,
float* dot_product) {
DCHECK_EQ(a->channels(), b->channels());
DCHECK_GE(frame_offset_a, 0);
DCHECK_GE(frame_offset_b, 0);
DCHECK_LE(frame_offset_a + num_frames, a->frames());
DCHECK_LE(frame_offset_b + num_frames, b->frames());
// SIMD optimized variants can provide a massive speedup to this operation.
#if defined(USE_SIMD)
const int rem = num_frames % 4;
const int last_index = num_frames - rem;
const int channels = a->channels();
for (int ch = 0; ch < channels; ++ch) {
const float* a_src = a->channel(ch) + frame_offset_a;
const float* b_src = b->channel(ch) + frame_offset_b;
#if defined(ARCH_CPU_X86_FAMILY)
// First sum all components.
__m128 m_sum = _mm_setzero_ps();
for (int s = 0; s < last_index; s += 4) {
m_sum = _mm_add_ps(
m_sum, _mm_mul_ps(_mm_loadu_ps(a_src + s), _mm_loadu_ps(b_src + s)));
}
// Reduce to a single float for this channel. Sadly, SSE1,2 doesn't have a
// horizontal sum function, so we have to condense manually.
m_sum = _mm_add_ps(_mm_movehl_ps(m_sum, m_sum), m_sum);
_mm_store_ss(dot_product + ch,
_mm_add_ss(m_sum, _mm_shuffle_ps(m_sum, m_sum, 1)));
#elif defined(ARCH_CPU_ARM_FAMILY)
// First sum all components.
float32x4_t m_sum = vmovq_n_f32(0);
for (int s = 0; s < last_index; s += 4)
m_sum = vmlaq_f32(m_sum, vld1q_f32(a_src + s), vld1q_f32(b_src + s));
// Reduce to a single float for this channel.
float32x2_t m_half = vadd_f32(vget_high_f32(m_sum), vget_low_f32(m_sum));
dot_product[ch] = vget_lane_f32(vpadd_f32(m_half, m_half), 0);
#endif
}
if (!rem)
return;
num_frames = rem;
frame_offset_a += last_index;
frame_offset_b += last_index;
#else
memset(dot_product, 0, sizeof(*dot_product) * a->channels());
#endif // defined(USE_SIMD)
// C version is required to handle remainder of frames (% 4 != 0)
for (int k = 0; k < a->channels(); ++k) {
const float* ch_a = a->channel(k) + frame_offset_a;
const float* ch_b = b->channel(k) + frame_offset_b;
for (int n = 0; n < num_frames; ++n)
dot_product[k] += *ch_a++ * *ch_b++;
}
}
void MultiChannelMovingBlockEnergies(const AudioBus* input,
int frames_per_block,
float* energy) {
int num_blocks = input->frames() - (frames_per_block - 1);
int channels = input->channels();
for (int k = 0; k < input->channels(); ++k) {
const float* input_channel = input->channel(k);
energy[k] = 0;
// First block of channel |k|.
for (int m = 0; m < frames_per_block; ++m) {
energy[k] += input_channel[m] * input_channel[m];
}
const float* slide_out = input_channel;
const float* slide_in = input_channel + frames_per_block;
for (int n = 1; n < num_blocks; ++n, ++slide_in, ++slide_out) {
energy[k + n * channels] = energy[k + (n - 1) * channels] - *slide_out *
*slide_out + *slide_in * *slide_in;
}
}
}
// Fit the curve f(x) = a * x^2 + b * x + c such that
// f(-1) = y[0]
// f(0) = y[1]
// f(1) = y[2]
// and return the maximum, assuming that y[0] <= y[1] >= y[2].
void QuadraticInterpolation(const float* y_values,
float* extremum,
float* extremum_value) {
float a = 0.5f * (y_values[2] + y_values[0]) - y_values[1];
float b = 0.5f * (y_values[2] - y_values[0]);
float c = y_values[1];
if (a == 0.f) {
// The coordinates are colinear (within floating-point error).
*extremum = 0;
*extremum_value = y_values[1];
} else {
*extremum = -b / (2.f * a);
*extremum_value = a * (*extremum) * (*extremum) + b * (*extremum) + c;
}
}
int DecimatedSearch(int decimation,
Interval exclude_interval,
const AudioBus* target_block,
const AudioBus* search_segment,
const float* energy_target_block,
const float* energy_candidate_blocks) {
int channels = search_segment->channels();
int block_size = target_block->frames();
int num_candidate_blocks = search_segment->frames() - (block_size - 1);
auto dot_prod = std::make_unique<float[]>(channels);
float similarity[3]; // Three elements for cubic interpolation.
int n = 0;
MultiChannelDotProduct(target_block, 0, search_segment, n, block_size,
dot_prod.get());
similarity[0] = MultiChannelSimilarityMeasure(
dot_prod.get(), energy_target_block,
&energy_candidate_blocks[n * channels], channels);
// Set the starting point as optimal point.
float best_similarity = similarity[0];
int optimal_index = 0;
n += decimation;
if (n >= num_candidate_blocks) {
return 0;
}
MultiChannelDotProduct(target_block, 0, search_segment, n, block_size,
dot_prod.get());
similarity[1] = MultiChannelSimilarityMeasure(
dot_prod.get(), energy_target_block,
&energy_candidate_blocks[n * channels], channels);
n += decimation;
if (n >= num_candidate_blocks) {
// We cannot do any more sampling. Compare these two values and return the
// optimal index.
return similarity[1] > similarity[0] ? decimation : 0;
}
for (; n < num_candidate_blocks; n += decimation) {
MultiChannelDotProduct(target_block, 0, search_segment, n, block_size,
dot_prod.get());
similarity[2] = MultiChannelSimilarityMeasure(
dot_prod.get(), energy_target_block,
&energy_candidate_blocks[n * channels], channels);
if ((similarity[1] > similarity[0] && similarity[1] >= similarity[2]) ||
(similarity[1] >= similarity[0] && similarity[1] > similarity[2])) {
// A local maximum is found. Do a cubic interpolation for a better
// estimate of candidate maximum.
float normalized_candidate_index;
float candidate_similarity;
QuadraticInterpolation(similarity, &normalized_candidate_index,
&candidate_similarity);
int candidate_index = n - decimation + static_cast<int>(
normalized_candidate_index * decimation + 0.5f);
if (candidate_similarity > best_similarity &&
!InInterval(candidate_index, exclude_interval)) {
optimal_index = candidate_index;
best_similarity = candidate_similarity;
}
} else if (n + decimation >= num_candidate_blocks &&
similarity[2] > best_similarity &&
!InInterval(n, exclude_interval)) {
// If this is the end-point and has a better similarity-measure than
// optimal, then we accept it as optimal point.
optimal_index = n;
best_similarity = similarity[2];
}
memmove(similarity, &similarity[1], 2 * sizeof(*similarity));
}
return optimal_index;
}
int FullSearch(int low_limit,
int high_limit,
Interval exclude_interval,
const AudioBus* target_block,
const AudioBus* search_block,
const float* energy_target_block,
const float* energy_candidate_blocks) {
int channels = search_block->channels();
int block_size = target_block->frames();
auto dot_prod = std::make_unique<float[]>(channels);
float best_similarity = std::numeric_limits<float>::min();
int optimal_index = 0;
for (int n = low_limit; n <= high_limit; ++n) {
if (InInterval(n, exclude_interval)) {
continue;
}
MultiChannelDotProduct(target_block, 0, search_block, n, block_size,
dot_prod.get());
float similarity = MultiChannelSimilarityMeasure(
dot_prod.get(), energy_target_block,
&energy_candidate_blocks[n * channels], channels);
if (similarity > best_similarity) {
best_similarity = similarity;
optimal_index = n;
}
}
return optimal_index;
}
int OptimalIndex(const AudioBus* search_block,
const AudioBus* target_block,
Interval exclude_interval) {
int channels = search_block->channels();
DCHECK_EQ(channels, target_block->channels());
int target_size = target_block->frames();
int num_candidate_blocks = search_block->frames() - (target_size - 1);
// This is a compromise between complexity reduction and search accuracy. I
// don't have a proof that down sample of order 5 is optimal. One can compute
// a decimation factor that minimizes complexity given the size of
// |search_block| and |target_block|. However, my experiments show the rate of
// missing the optimal index is significant. This value is chosen
// heuristically based on experiments.
const int kSearchDecimation = 5;
auto energy_target_block = std::make_unique<float[]>(channels);
auto energy_candidate_blocks =
std::make_unique<float[]>(channels * num_candidate_blocks);
// Energy of all candid frames.
MultiChannelMovingBlockEnergies(search_block, target_size,
energy_candidate_blocks.get());
// Energy of target frame.
MultiChannelDotProduct(target_block, 0, target_block, 0,
target_size, energy_target_block.get());
int optimal_index = DecimatedSearch(kSearchDecimation,
exclude_interval, target_block,
search_block, energy_target_block.get(),
energy_candidate_blocks.get());
int lim_low = std::max(0, optimal_index - kSearchDecimation);
int lim_high = std::min(num_candidate_blocks - 1,
optimal_index + kSearchDecimation);
return FullSearch(lim_low, lim_high, exclude_interval, target_block,
search_block, energy_target_block.get(),
energy_candidate_blocks.get());
}
void GetPeriodicHanningWindow(int window_length, float* window) {
const float scale = 2.0f * std::numbers::pi_v<float> / window_length;
for (int n = 0; n < window_length; ++n)
window[n] = 0.5f * (1.0f - std::cos(n * scale));
}
} // namespace internal
} // namespace media