1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
media / gpu / av1_builder.cc [blame]
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/av1_builder.h"
#include <iterator>
#include "base/check_op.h"
namespace media {
namespace {
constexpr int kPrimaryReferenceNone = 7;
} // namespace
AV1BitstreamBuilder::AV1BitstreamBuilder() = default;
AV1BitstreamBuilder::~AV1BitstreamBuilder() = default;
AV1BitstreamBuilder::AV1BitstreamBuilder(AV1BitstreamBuilder&&) = default;
AV1BitstreamBuilder AV1BitstreamBuilder::BuildSequenceHeaderOBU(
const SequenceHeader& seq_hdr) {
AV1BitstreamBuilder ret;
ret.Write(seq_hdr.profile, 3);
ret.WriteBool(false); // Still picture default 0.
ret.WriteBool(false); // Disable reduced still picture.
ret.WriteBool(false); // No timing info present.
ret.WriteBool(false); // No initial display delay.
CHECK_LT(seq_hdr.operating_points_cnt_minus_1, kMaxTemporalLayerNum);
ret.Write(seq_hdr.operating_points_cnt_minus_1, 5);
for (uint8_t i = 0; i <= seq_hdr.operating_points_cnt_minus_1; i++) {
if (seq_hdr.operating_points_cnt_minus_1 == 0) {
ret.Write(0, 12); // No scalability information.
} else {
ret.Write(1, 4); // Spatial layer 1 should be decoded.
ret.Write((1 << (seq_hdr.operating_points_cnt_minus_1 + 1 - i)) - 1, 8);
}
ret.Write(seq_hdr.level.at(i), 5);
if (seq_hdr.level.at(i) > 7) {
ret.WriteBool(seq_hdr.tier.at(i));
}
}
ret.Write(seq_hdr.frame_width_bits_minus_1, 4);
ret.Write(seq_hdr.frame_height_bits_minus_1, 4);
ret.Write(seq_hdr.width - 1, seq_hdr.frame_width_bits_minus_1 + 1);
ret.Write(seq_hdr.height - 1, seq_hdr.frame_height_bits_minus_1 + 1);
ret.WriteBool(false); // No frame id numbers present.
ret.WriteBool(seq_hdr.use_128x128_superblock);
ret.WriteBool(seq_hdr.enable_filter_intra);
ret.WriteBool(seq_hdr.enable_intra_edge_filter);
ret.WriteBool(seq_hdr.enable_interintra_compound);
ret.WriteBool(seq_hdr.enable_masked_compound);
ret.WriteBool(seq_hdr.enable_warped_motion);
ret.WriteBool(seq_hdr.enable_dual_filter);
ret.WriteBool(seq_hdr.enable_order_hint);
if (seq_hdr.enable_order_hint) {
ret.WriteBool(seq_hdr.enable_jnt_comp);
ret.WriteBool(seq_hdr.enable_ref_frame_mvs);
}
ret.WriteBool(true); // Enable sequence choose screen content tools.
ret.WriteBool(false); // Disable sequence choose integer MV.
ret.WriteBool(false); // Disable sequence force integer MV.
if (seq_hdr.enable_order_hint) {
ret.Write(seq_hdr.order_hint_bits_minus_1, 3);
}
ret.WriteBool(seq_hdr.enable_superres);
ret.WriteBool(seq_hdr.enable_cdef);
ret.WriteBool(seq_hdr.enable_restoration);
ret.WriteBool(false); // Disable high bitdepth.
ret.WriteBool(false); // Disable monochrome.
ret.WriteBool(false); // Disable color description present.
ret.WriteBool(false); // No color range.
ret.Write(0, 2); // Chroma sample position = 0.
ret.WriteBool(true); // Separate uv delta q.
ret.WriteBool(false); // No film grain parameters present.
ret.PutTrailingBits();
return ret;
}
AV1BitstreamBuilder AV1BitstreamBuilder::BuildFrameHeaderOBU(
const SequenceHeader& seq_hdr,
const FrameHeader& pic_hdr) {
AV1BitstreamBuilder ret;
ret.WriteBool(false); // For a frame OBU, the show_existing_frame flag is
// always set to 0.
ret.Write(pic_hdr.frame_type, 2);
ret.WriteBool(true); // If this frame needs to be immediately output once
// decoded, show_frame flag should be true.
if (pic_hdr.frame_type != libgav1::FrameType::kFrameKey) {
ret.WriteBool(pic_hdr.error_resilient_mode);
}
ret.WriteBool(pic_hdr.disable_cdf_update);
ret.WriteBool(false); // Disable allow screen content tools.
ret.WriteBool(false); // Disable frame size override flag.
ret.Write(pic_hdr.order_hint, seq_hdr.order_hint_bits_minus_1 + 1);
if (pic_hdr.frame_type != libgav1::FrameType::kFrameKey) {
if (!pic_hdr.error_resilient_mode) {
ret.Write(pic_hdr.primary_ref_frame, 3);
}
ret.Write(pic_hdr.refresh_frame_flags, 8);
if (pic_hdr.error_resilient_mode && seq_hdr.enable_order_hint) {
// Set order hint for each reference frame.
for (uint32_t order_hint : pic_hdr.ref_order_hint) {
ret.Write(order_hint, seq_hdr.order_hint_bits_minus_1 + 1);
}
}
if (seq_hdr.enable_order_hint) {
ret.WriteBool(false); // Disable frame reference short signaling.
}
for (uint8_t ref_idx : pic_hdr.ref_frame_idx) {
ret.Write(ref_idx, 3);
}
ret.WriteBool(false); // Render and frame size are the same.
ret.WriteBool(false); // No allow high precision MV.
ret.WriteBool(false); // Filter not switchable.
ret.Write(0, 2); // Set interpolation filter to 0.
ret.WriteBool(false); // Motion not switchable.
} else {
ret.WriteBool(false); // Render and frame size are the same.
}
if (!pic_hdr.disable_cdf_update) {
ret.WriteBool(pic_hdr.disable_frame_end_update_cdf);
}
// Pack tile info
ret.WriteBool(true); // Uniform tile spacing.
ret.WriteBool(false); // Don't increment log2 of tile cols.
ret.WriteBool(false); // Don't increment log2 of tile rows.
// Pack quantization parameters.
ret.Write(pic_hdr.base_qindex, 8);
ret.WriteBool(false); // No DC Y delta Q.
ret.WriteBool(false); // No UV delta Q.
ret.WriteBool(false); // No DC U delta Q.
ret.WriteBool(false); // No AC U delta Q.
ret.WriteBool(false); // No Qmatrix.
// Pack segmentation parameters.
ret.WriteBool(pic_hdr.segmentation_enabled);
if (pic_hdr.segmentation_enabled) {
if (pic_hdr.primary_ref_frame != kPrimaryReferenceNone) {
ret.WriteBool(pic_hdr.segmentation_update_map);
ret.WriteBool(pic_hdr.segmentation_temporal_update);
ret.WriteBool(pic_hdr.segmentation_update_data);
}
for (uint32_t i = 0; i < libgav1::kMaxSegments; i++) {
for (uint32_t j = 0; j < libgav1::kSegmentFeatureMax; j++) {
bool feature_enabled = (i < pic_hdr.segment_number &&
(pic_hdr.feature_mask.at(i) & (1u << j)));
ret.WriteBool(feature_enabled);
if (feature_enabled) {
int delta_q = pic_hdr.feature_data.at(i).at(j);
ret.WriteBool(delta_q < 0); // Sign bit.
if (delta_q < 0) {
delta_q += 2 * (1 << 8);
}
ret.Write(delta_q, 8); // Write the unsigned value.
}
}
}
}
if (pic_hdr.base_qindex > 0) {
ret.WriteBool(false); // No delta q present.
}
// Pack loop filter parameters.
ret.Write(pic_hdr.filter_level.at(0), 6);
ret.Write(pic_hdr.filter_level.at(1), 6);
if (pic_hdr.filter_level.at(0) || pic_hdr.filter_level.at(1)) {
ret.Write(pic_hdr.filter_level_u, 6);
ret.Write(pic_hdr.filter_level_v, 6);
}
ret.Write(pic_hdr.sharpness_level, 3);
ret.WriteBool(pic_hdr.loop_filter_delta_enabled);
// Pack CDEF parameters.
if (seq_hdr.enable_cdef) {
uint8_t num_planes = 3; // mono_chrome not supported.
ret.Write(2, 2); // Set CDEF damping minus 3 to 5 - 3.
ret.Write(3, 2); // Set cdef_bits to 3.
for (size_t i = 0; i < (1 << num_planes); i++) {
ret.Write(pic_hdr.cdef_y_pri_strength.at(i), 4);
ret.Write(pic_hdr.cdef_y_sec_strength.at(i), 2);
ret.Write(pic_hdr.cdef_uv_pri_strength.at(i), 4);
ret.Write(pic_hdr.cdef_uv_sec_strength.at(i), 2);
}
}
ret.WriteBool(true); // TxMode TX_MODE_SELECT.
if (pic_hdr.frame_type != libgav1::FrameType::kFrameKey) {
ret.WriteBool(false); // Disable reference select.
}
ret.WriteBool(pic_hdr.reduced_tx_set);
if (pic_hdr.frame_type != libgav1::FrameType::kFrameKey) {
for (int i = 1 /*LAST_FRAME*/; i <= 7 /*ALTREF_FRAME*/; i++) {
ret.WriteBool(false); // Set is_global to all zeros.
}
}
ret.PutAlignBits();
return ret;
}
void AV1BitstreamBuilder::Write(uint64_t val, int num_bits) {
queued_writes_.emplace_back(val, num_bits);
total_outstanding_bits_ += num_bits;
}
void AV1BitstreamBuilder::WriteBool(bool val) {
Write(val, 1);
}
std::vector<uint8_t> AV1BitstreamBuilder::Flush() && {
std::vector<uint8_t> ret;
uint8_t curr_byte = 0;
int rem_bits_in_byte = 8;
for (auto queued_write : queued_writes_) {
uint64_t val = queued_write.first;
int outstanding_bits = queued_write.second;
while (outstanding_bits) {
if (rem_bits_in_byte >= outstanding_bits) {
curr_byte |= val << (rem_bits_in_byte - outstanding_bits);
rem_bits_in_byte -= outstanding_bits;
outstanding_bits = 0;
} else {
curr_byte |= (val >> (outstanding_bits - rem_bits_in_byte)) &
((1 << rem_bits_in_byte) - 1);
outstanding_bits -= rem_bits_in_byte;
rem_bits_in_byte = 0;
}
if (!rem_bits_in_byte) {
ret.push_back(curr_byte);
curr_byte = 0;
rem_bits_in_byte = 8;
}
}
}
if (rem_bits_in_byte != 8) {
ret.push_back(curr_byte);
}
queued_writes_.clear();
total_outstanding_bits_ = 0;
return ret;
}
void AV1BitstreamBuilder::PutAlignBits() {
int misalignment = total_outstanding_bits_ % 8;
if (misalignment != 0) {
int num_zero_bits = 8 - misalignment;
Write(0, num_zero_bits);
}
}
void AV1BitstreamBuilder::PutTrailingBits() {
WriteBool(true); // trialing one bit.
PutAlignBits();
}
void AV1BitstreamBuilder::WriteOBUHeader(libgav1::ObuType type,
bool has_size,
bool extension_flag,
std::optional<uint8_t> temporal_id) {
DCHECK_LE(1, type);
DCHECK_LE(type, 8);
WriteBool(false); // forbidden bit must be set to 0.
Write(static_cast<uint64_t>(type), 4);
WriteBool(extension_flag);
WriteBool(has_size);
WriteBool(false); // reserved bit must be set to 0.
if (extension_flag) {
CHECK(temporal_id.has_value());
Write(temporal_id.value(), 3);
Write(0, 2); // spatial layer must be zero.
Write(0, 3); // reserved bits must be set to 0.
}
}
// Encode a variable length unsigned integer of up to 4 bytes.
// Most significant bit of each byte indicates if parsing should continue, and
// the 7 least significant bits hold the actual data. So the encoded length
// may be 5 bytes under some circumstances.
// This function also has a fixed size mode where we pass in a fixed size for
// the data and the function zero pads up to that size.
// See section 4.10.5 of the AV1 specification.
void AV1BitstreamBuilder::WriteValueInLeb128(uint32_t value,
std::optional<int> fixed_size) {
for (int i = 0; i < fixed_size.value_or(5); i++) {
uint8_t curr_byte = value & 0x7F;
value >>= 7;
if (value || fixed_size) {
curr_byte |= 0x80;
Write(curr_byte, 8);
} else {
Write(curr_byte, 8);
break;
}
}
}
void AV1BitstreamBuilder::AppendBitstreamBuffer(AV1BitstreamBuilder buffer) {
queued_writes_.insert(queued_writes_.end(),
std::make_move_iterator(buffer.queued_writes_.begin()),
std::make_move_iterator(buffer.queued_writes_.end()));
total_outstanding_bits_ += buffer.total_outstanding_bits_;
}
} // namespace media