1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
media / gpu / h264_decoder.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/h264_decoder.h"
#include <limits>
#include <memory>
#include <optional>
#include "base/feature_list.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/ranges/algorithm.h"
#include "media/base/media_switches.h"
#include "media/parsers/h264_level_limits.h"
namespace media {
namespace {
bool ParseBitDepth(const H264SPS& sps, uint8_t& bit_depth) {
// Spec 7.4.2.1.1
if (sps.bit_depth_luma_minus8 != sps.bit_depth_chroma_minus8) {
DVLOG(1) << "H264Decoder doesn't support different bit depths between luma"
<< "and chroma, bit_depth_luma_minus8="
<< sps.bit_depth_luma_minus8
<< ", bit_depth_chroma_minus8=" << sps.bit_depth_chroma_minus8;
return false;
}
DCHECK_GE(sps.bit_depth_luma_minus8, 0);
DCHECK_LE(sps.bit_depth_luma_minus8, 6);
switch (sps.bit_depth_luma_minus8) {
case 0:
bit_depth = 8u;
break;
case 2:
bit_depth = 10u;
break;
case 4:
bit_depth = 12u;
break;
case 6:
bit_depth = 14u;
break;
default:
DVLOG(1) << "Invalid bit depth: "
<< base::checked_cast<int>(sps.bit_depth_luma_minus8 + 8);
return false;
}
return true;
}
bool IsValidBitDepth(uint8_t bit_depth, VideoCodecProfile profile) {
// Spec A.2.
switch (profile) {
case H264PROFILE_BASELINE:
case H264PROFILE_MAIN:
case H264PROFILE_EXTENDED:
case H264PROFILE_HIGH:
return bit_depth == 8u;
case H264PROFILE_HIGH10PROFILE:
case H264PROFILE_HIGH422PROFILE:
return bit_depth == 8u || bit_depth == 10u;
case H264PROFILE_HIGH444PREDICTIVEPROFILE:
return bit_depth == 8u || bit_depth == 10u || bit_depth == 12u ||
bit_depth == 14u;
case H264PROFILE_SCALABLEBASELINE:
case H264PROFILE_SCALABLEHIGH:
// Spec G.10.1.
return bit_depth == 8u;
case H264PROFILE_STEREOHIGH:
case H264PROFILE_MULTIVIEWHIGH:
// Spec H.10.1.1 and H.10.1.2.
return bit_depth == 8u;
default:
NOTREACHED();
}
}
} // namespace
H264Decoder::H264Accelerator::H264Accelerator() = default;
H264Decoder::H264Accelerator::~H264Accelerator() = default;
scoped_refptr<H264Picture>
H264Decoder::H264Accelerator::CreateH264PictureSecure(uint64_t secure_handle) {
return nullptr;
}
void H264Decoder::H264Accelerator::ProcessSPS(
const H264SPS* sps,
base::span<const uint8_t> sps_nalu_data) {}
void H264Decoder::H264Accelerator::ProcessPPS(
const H264PPS* pps,
base::span<const uint8_t> pps_nalu_data) {}
H264Decoder::H264Accelerator::Status
H264Decoder::H264Accelerator::ParseEncryptedSliceHeader(
const std::vector<base::span<const uint8_t>>& data,
const std::vector<SubsampleEntry>& subsamples,
uint64_t secure_handle,
H264SliceHeader* slice_header_out) {
return H264Decoder::H264Accelerator::Status::kNotSupported;
}
H264Decoder::H264Accelerator::Status H264Decoder::H264Accelerator::SetStream(
base::span<const uint8_t> stream,
const DecryptConfig* decrypt_config) {
return H264Decoder::H264Accelerator::Status::kNotSupported;
}
bool H264Decoder::H264Accelerator::RequiresRefLists() {
return false;
}
H264Decoder::H264Decoder(std::unique_ptr<H264Accelerator> accelerator,
VideoCodecProfile profile,
const VideoColorSpace& container_color_space)
: state_(State::kNeedStreamMetadata),
container_color_space_(container_color_space),
max_frame_num_(0),
max_pic_num_(0),
max_long_term_frame_idx_(0),
max_num_reorder_frames_(0),
// TODO(hiroh): Set profile to UNKNOWN.
profile_(profile),
accelerator_(std::move(accelerator)),
requires_ref_lists_(accelerator_->RequiresRefLists()) {
DCHECK(accelerator_);
Reset();
}
H264Decoder::~H264Decoder() = default;
void H264Decoder::Reset() {
curr_pic_ = nullptr;
curr_nalu_ = nullptr;
curr_slice_hdr_ = nullptr;
curr_sps_id_ = -1;
curr_pps_id_ = -1;
prev_frame_num_ = -1;
prev_ref_frame_num_ = -1;
prev_frame_num_offset_ = -1;
prev_has_memmgmnt5_ = false;
prev_ref_has_memmgmnt5_ = false;
prev_ref_top_field_order_cnt_ = -1;
prev_ref_pic_order_cnt_msb_ = -1;
prev_ref_pic_order_cnt_lsb_ = -1;
prev_ref_field_ = H264Picture::FIELD_NONE;
ref_pic_list_p0_.clear();
ref_pic_list_b0_.clear();
ref_pic_list_b1_.clear();
dpb_.Clear();
parser_.Reset();
accelerator_->Reset();
last_output_poc_ = std::numeric_limits<int>::min();
prior_cencv1_nalus_.clear();
prior_cencv1_subsamples_.clear();
recovery_frame_num_.reset();
recovery_frame_cnt_.reset();
secure_handle_ = 0;
// If we are in kDecoding, we can resume without processing an SPS.
// The state becomes kDecoding again, (1) at the first IDR slice or (2) at
// the first slice after the recovery point SEI.
if (state_ == State::kDecoding)
state_ = State::kAfterReset;
}
void H264Decoder::PrepareRefPicLists() {
ConstructReferencePicListsP();
ConstructReferencePicListsB();
}
bool H264Decoder::ModifyReferencePicLists(const H264SliceHeader* slice_hdr,
H264Picture::Vector* ref_pic_list0,
H264Picture::Vector* ref_pic_list1) {
ref_pic_list0->clear();
ref_pic_list1->clear();
// Fill reference picture lists for B and S/SP slices.
if (slice_hdr->IsPSlice() || slice_hdr->IsSPSlice()) {
*ref_pic_list0 = ref_pic_list_p0_;
return ModifyReferencePicList(slice_hdr, 0, ref_pic_list0);
} else if (slice_hdr->IsBSlice()) {
*ref_pic_list0 = ref_pic_list_b0_;
*ref_pic_list1 = ref_pic_list_b1_;
return ModifyReferencePicList(slice_hdr, 0, ref_pic_list0) &&
ModifyReferencePicList(slice_hdr, 1, ref_pic_list1);
}
return true;
}
H264Decoder::H264Accelerator::Status H264Decoder::DecodePicture() {
DCHECK(curr_pic_.get());
return accelerator_->SubmitDecode(curr_pic_);
}
bool H264Decoder::InitNonexistingPicture(scoped_refptr<H264Picture> pic,
int frame_num) {
pic->nonexisting = true;
pic->nal_ref_idc = 1;
pic->frame_num = pic->pic_num = frame_num;
pic->adaptive_ref_pic_marking_mode_flag = false;
pic->ref = true;
pic->long_term_reference_flag = false;
pic->field = H264Picture::FIELD_NONE;
return CalculatePicOrderCounts(pic);
}
bool H264Decoder::InitCurrPicture(const H264SliceHeader* slice_hdr) {
if (!FillH264PictureFromSliceHeader(parser_.GetSPS(curr_sps_id_), *slice_hdr,
curr_pic_.get())) {
return false;
}
if (!CalculatePicOrderCounts(curr_pic_))
return false;
curr_pic_->long_term_reference_flag = slice_hdr->long_term_reference_flag;
curr_pic_->adaptive_ref_pic_marking_mode_flag =
slice_hdr->adaptive_ref_pic_marking_mode_flag;
// If the slice header indicates we will have to perform reference marking
// process after this picture is decoded, store required data for that
// purpose.
if (slice_hdr->adaptive_ref_pic_marking_mode_flag) {
static_assert(sizeof(curr_pic_->ref_pic_marking) ==
sizeof(slice_hdr->ref_pic_marking),
"Array sizes of ref pic marking do not match.");
memcpy(curr_pic_->ref_pic_marking, slice_hdr->ref_pic_marking,
sizeof(curr_pic_->ref_pic_marking));
}
curr_pic_->set_visible_rect(visible_rect_);
curr_pic_->set_bitstream_id(stream_id_);
return true;
}
bool H264Decoder::CalculatePicOrderCounts(scoped_refptr<H264Picture> pic) {
const H264SPS* sps = parser_.GetSPS(curr_sps_id_);
if (!sps)
return false;
switch (pic->pic_order_cnt_type) {
case 0: {
// See spec 8.2.1.1.
int prev_pic_order_cnt_msb, prev_pic_order_cnt_lsb;
if (pic->idr) {
prev_pic_order_cnt_msb = prev_pic_order_cnt_lsb = 0;
} else {
if (prev_ref_has_memmgmnt5_) {
prev_pic_order_cnt_msb = 0;
prev_pic_order_cnt_lsb = prev_ref_top_field_order_cnt_;
} else {
prev_pic_order_cnt_msb = prev_ref_pic_order_cnt_msb_;
prev_pic_order_cnt_lsb = prev_ref_pic_order_cnt_lsb_;
}
}
int max_pic_order_cnt_lsb =
1 << (sps->log2_max_pic_order_cnt_lsb_minus4 + 4);
DCHECK_NE(max_pic_order_cnt_lsb, 0);
if ((pic->pic_order_cnt_lsb < prev_pic_order_cnt_lsb) &&
(prev_pic_order_cnt_lsb - pic->pic_order_cnt_lsb >=
max_pic_order_cnt_lsb / 2)) {
pic->pic_order_cnt_msb = prev_pic_order_cnt_msb + max_pic_order_cnt_lsb;
} else if ((pic->pic_order_cnt_lsb > prev_pic_order_cnt_lsb) &&
(pic->pic_order_cnt_lsb - prev_pic_order_cnt_lsb >
max_pic_order_cnt_lsb / 2)) {
pic->pic_order_cnt_msb = prev_pic_order_cnt_msb - max_pic_order_cnt_lsb;
} else {
pic->pic_order_cnt_msb = prev_pic_order_cnt_msb;
}
pic->top_field_order_cnt =
pic->pic_order_cnt_msb + pic->pic_order_cnt_lsb;
pic->bottom_field_order_cnt =
pic->top_field_order_cnt + pic->delta_pic_order_cnt_bottom;
break;
}
case 1: {
// See spec 8.2.1.2.
if (prev_has_memmgmnt5_)
prev_frame_num_offset_ = 0;
if (pic->idr)
pic->frame_num_offset = 0;
else if (prev_frame_num_ > pic->frame_num)
pic->frame_num_offset = prev_frame_num_offset_ + max_frame_num_;
else
pic->frame_num_offset = prev_frame_num_offset_;
int abs_frame_num = 0;
if (sps->num_ref_frames_in_pic_order_cnt_cycle != 0)
abs_frame_num = pic->frame_num_offset + pic->frame_num;
else
abs_frame_num = 0;
if (pic->nal_ref_idc == 0 && abs_frame_num > 0)
--abs_frame_num;
base::CheckedNumeric<int> expected_pic_order_cnt = 0;
if (abs_frame_num > 0) {
if (sps->num_ref_frames_in_pic_order_cnt_cycle == 0) {
DVLOG(1) << "Invalid num_ref_frames_in_pic_order_cnt_cycle.";
return false;
}
int pic_order_cnt_cycle_cnt =
(abs_frame_num - 1) / sps->num_ref_frames_in_pic_order_cnt_cycle;
int frame_num_in_pic_order_cnt_cycle =
(abs_frame_num - 1) % sps->num_ref_frames_in_pic_order_cnt_cycle;
expected_pic_order_cnt =
base::CheckedNumeric<int>(pic_order_cnt_cycle_cnt) *
sps->expected_delta_per_pic_order_cnt_cycle;
// frame_num_in_pic_order_cnt_cycle is verified < 255 in parser
for (int i = 0; i <= frame_num_in_pic_order_cnt_cycle; ++i)
expected_pic_order_cnt += sps->offset_for_ref_frame[i];
}
if (!pic->nal_ref_idc)
expected_pic_order_cnt += sps->offset_for_non_ref_pic;
base::CheckedNumeric<int> top_field_order_cnt =
expected_pic_order_cnt + pic->delta_pic_order_cnt0;
base::CheckedNumeric<int> bottom_field_order_cnt =
top_field_order_cnt + sps->offset_for_top_to_bottom_field +
pic->delta_pic_order_cnt1;
if (!top_field_order_cnt.IsValid()) {
DVLOG(1) << "Invalid top_field_order_cnt.";
return false;
}
if (!bottom_field_order_cnt.IsValid()) {
DVLOG(1) << "Invalid bottom_field_order_cnt.";
return false;
}
pic->top_field_order_cnt = top_field_order_cnt.ValueOrDie();
pic->bottom_field_order_cnt = bottom_field_order_cnt.ValueOrDie();
break;
}
case 2: {
// See spec 8.2.1.3.
if (prev_has_memmgmnt5_)
prev_frame_num_offset_ = 0;
if (pic->idr)
pic->frame_num_offset = 0;
else if (prev_frame_num_ > pic->frame_num)
pic->frame_num_offset = prev_frame_num_offset_ + max_frame_num_;
else
pic->frame_num_offset = prev_frame_num_offset_;
int temp_pic_order_cnt;
if (pic->idr) {
temp_pic_order_cnt = 0;
} else if (!pic->nal_ref_idc) {
temp_pic_order_cnt = 2 * (pic->frame_num_offset + pic->frame_num) - 1;
} else {
temp_pic_order_cnt = 2 * (pic->frame_num_offset + pic->frame_num);
}
pic->top_field_order_cnt = temp_pic_order_cnt;
pic->bottom_field_order_cnt = temp_pic_order_cnt;
break;
}
default:
DVLOG(1) << "Invalid pic_order_cnt_type: " << sps->pic_order_cnt_type;
return false;
}
pic->pic_order_cnt =
std::min(pic->top_field_order_cnt, pic->bottom_field_order_cnt);
return true;
}
void H264Decoder::UpdatePicNums(int frame_num) {
for (auto& pic : dpb_) {
if (!pic->ref)
continue;
// 8.2.4.1. Assumes non-interlaced stream.
DCHECK_EQ(pic->field, H264Picture::FIELD_NONE);
if (pic->long_term) {
pic->long_term_pic_num = pic->long_term_frame_idx;
} else {
if (pic->frame_num > frame_num)
pic->frame_num_wrap = pic->frame_num - max_frame_num_;
else
pic->frame_num_wrap = pic->frame_num;
pic->pic_num = pic->frame_num_wrap;
}
}
}
struct PicNumDescCompare {
bool operator()(const scoped_refptr<H264Picture>& a,
const scoped_refptr<H264Picture>& b) const {
return a->pic_num > b->pic_num;
}
};
struct LongTermPicNumAscCompare {
bool operator()(const scoped_refptr<H264Picture>& a,
const scoped_refptr<H264Picture>& b) const {
return a->long_term_pic_num < b->long_term_pic_num;
}
};
void H264Decoder::ConstructReferencePicListsP() {
// RefPicList0 (8.2.4.2.1) [[1] [2]], where:
// [1] shortterm ref pics sorted by descending pic_num,
// [2] longterm ref pics by ascending long_term_pic_num.
ref_pic_list_p0_.clear();
// First get the short ref pics...
dpb_.GetShortTermRefPicsAppending(&ref_pic_list_p0_);
size_t num_short_refs = ref_pic_list_p0_.size();
// and sort them to get [1].
std::sort(ref_pic_list_p0_.begin(), ref_pic_list_p0_.end(),
PicNumDescCompare());
// Now get long term pics and sort them by long_term_pic_num to get [2].
dpb_.GetLongTermRefPicsAppending(&ref_pic_list_p0_);
std::sort(ref_pic_list_p0_.begin() + num_short_refs, ref_pic_list_p0_.end(),
LongTermPicNumAscCompare());
}
struct POCAscCompare {
bool operator()(const scoped_refptr<H264Picture>& a,
const scoped_refptr<H264Picture>& b) const {
return a->pic_order_cnt < b->pic_order_cnt;
}
};
struct POCDescCompare {
bool operator()(const scoped_refptr<H264Picture>& a,
const scoped_refptr<H264Picture>& b) const {
return a->pic_order_cnt > b->pic_order_cnt;
}
};
void H264Decoder::ConstructReferencePicListsB() {
// RefPicList0 (8.2.4.2.3) [[1] [2] [3]], where:
// [1] shortterm ref pics with POC < curr_pic's POC sorted by descending POC,
// [2] shortterm ref pics with POC > curr_pic's POC by ascending POC,
// [3] longterm ref pics by ascending long_term_pic_num.
ref_pic_list_b0_.clear();
ref_pic_list_b1_.clear();
dpb_.GetShortTermRefPicsAppending(&ref_pic_list_b0_);
size_t num_short_refs = ref_pic_list_b0_.size();
// First sort ascending, this will put [1] in right place and finish [2].
std::sort(ref_pic_list_b0_.begin(), ref_pic_list_b0_.end(), POCAscCompare());
// Find first with POC > curr_pic's POC to get first element in [2]...
H264Picture::Vector::iterator iter;
iter = std::upper_bound(ref_pic_list_b0_.begin(), ref_pic_list_b0_.end(),
curr_pic_.get(), POCAscCompare());
// and sort [1] descending, thus finishing sequence [1] [2].
std::sort(ref_pic_list_b0_.begin(), iter, POCDescCompare());
// Now add [3] and sort by ascending long_term_pic_num.
dpb_.GetLongTermRefPicsAppending(&ref_pic_list_b0_);
std::sort(ref_pic_list_b0_.begin() + num_short_refs, ref_pic_list_b0_.end(),
LongTermPicNumAscCompare());
// RefPicList1 (8.2.4.2.4) [[1] [2] [3]], where:
// [1] shortterm ref pics with POC > curr_pic's POC sorted by ascending POC,
// [2] shortterm ref pics with POC < curr_pic's POC by descending POC,
// [3] longterm ref pics by ascending long_term_pic_num.
dpb_.GetShortTermRefPicsAppending(&ref_pic_list_b1_);
num_short_refs = ref_pic_list_b1_.size();
// First sort by descending POC.
std::sort(ref_pic_list_b1_.begin(), ref_pic_list_b1_.end(), POCDescCompare());
// Find first with POC < curr_pic's POC to get first element in [2]...
iter = std::upper_bound(ref_pic_list_b1_.begin(), ref_pic_list_b1_.end(),
curr_pic_.get(), POCDescCompare());
// and sort [1] ascending.
std::sort(ref_pic_list_b1_.begin(), iter, POCAscCompare());
// Now add [3] and sort by ascending long_term_pic_num
dpb_.GetLongTermRefPicsAppending(&ref_pic_list_b1_);
std::sort(ref_pic_list_b1_.begin() + num_short_refs, ref_pic_list_b1_.end(),
LongTermPicNumAscCompare());
// If lists identical, swap first two entries in RefPicList1 (spec 8.2.4.2.3)
if (ref_pic_list_b1_.size() > 1 &&
base::ranges::equal(ref_pic_list_b0_, ref_pic_list_b1_))
std::swap(ref_pic_list_b1_[0], ref_pic_list_b1_[1]);
}
// See 8.2.4
int H264Decoder::PicNumF(const H264Picture& pic) {
if (!pic.long_term)
return pic.pic_num;
else
return max_pic_num_;
}
// See 8.2.4
int H264Decoder::LongTermPicNumF(const H264Picture& pic) {
if (pic.ref && pic.long_term)
return pic.long_term_pic_num;
else
return 2 * (max_long_term_frame_idx_ + 1);
}
// Shift elements on the |v| starting from |from| to |to|, inclusive,
// one position to the right and insert pic at |from|.
static void ShiftRightAndInsert(H264Picture::Vector* v,
int from,
int to,
scoped_refptr<H264Picture> pic) {
// Security checks, do not disable in Debug mode.
CHECK(from <= to);
CHECK(to <= std::numeric_limits<int>::max() - 2);
// Additional checks. Debug mode ok.
DCHECK(v);
DCHECK(pic);
DCHECK((to + 1 == static_cast<int>(v->size())) ||
(to + 2 == static_cast<int>(v->size())));
v->resize(to + 2);
for (int i = to + 1; i > from; --i)
(*v)[i] = (*v)[i - 1];
(*v)[from] = std::move(pic);
}
bool H264Decoder::ModifyReferencePicList(const H264SliceHeader* slice_hdr,
int list,
H264Picture::Vector* ref_pic_listx) {
bool ref_pic_list_modification_flag_lX;
int num_ref_idx_lX_active_minus1;
const H264ModificationOfPicNum* list_mod;
// This can process either ref_pic_list0 or ref_pic_list1, depending on
// the list argument. Set up pointers to proper list to be processed here.
if (list == 0) {
ref_pic_list_modification_flag_lX =
slice_hdr->ref_pic_list_modification_flag_l0;
num_ref_idx_lX_active_minus1 = slice_hdr->num_ref_idx_l0_active_minus1;
list_mod = slice_hdr->ref_list_l0_modifications;
} else {
ref_pic_list_modification_flag_lX =
slice_hdr->ref_pic_list_modification_flag_l1;
num_ref_idx_lX_active_minus1 = slice_hdr->num_ref_idx_l1_active_minus1;
list_mod = slice_hdr->ref_list_l1_modifications;
}
// Resize the list to the size requested in the slice header.
// Note that per 8.2.4.2 it's possible for num_ref_idx_lX_active_minus1 to
// indicate there should be more ref pics on list than we constructed.
// Those superfluous ones should be treated as non-reference and will be
// initialized to nullptr, which must be handled by clients.
DCHECK_GE(num_ref_idx_lX_active_minus1, 0);
ref_pic_listx->resize(num_ref_idx_lX_active_minus1 + 1);
if (!ref_pic_list_modification_flag_lX)
return true;
// Spec 8.2.4.3:
// Reorder pictures on the list in a way specified in the stream.
int pic_num_lx_pred = curr_pic_->pic_num;
int ref_idx_lx = 0;
int pic_num_lx_no_wrap;
int pic_num_lx;
bool done = false;
scoped_refptr<H264Picture> pic;
for (int i = 0; i < H264SliceHeader::kRefListModSize && !done; ++i) {
switch (list_mod->modification_of_pic_nums_idc) {
case 0:
case 1:
// Modify short reference picture position.
if (list_mod->modification_of_pic_nums_idc == 0) {
// Subtract given value from predicted PicNum.
pic_num_lx_no_wrap =
pic_num_lx_pred -
(static_cast<int>(list_mod->abs_diff_pic_num_minus1) + 1);
// Wrap around max_pic_num_ if it becomes < 0 as result
// of subtraction.
if (pic_num_lx_no_wrap < 0)
pic_num_lx_no_wrap += max_pic_num_;
} else {
// Add given value to predicted PicNum.
pic_num_lx_no_wrap =
pic_num_lx_pred +
(static_cast<int>(list_mod->abs_diff_pic_num_minus1) + 1);
// Wrap around max_pic_num_ if it becomes >= max_pic_num_ as result
// of the addition.
if (pic_num_lx_no_wrap >= max_pic_num_)
pic_num_lx_no_wrap -= max_pic_num_;
}
// For use in next iteration.
pic_num_lx_pred = pic_num_lx_no_wrap;
if (pic_num_lx_no_wrap > curr_pic_->pic_num)
pic_num_lx = pic_num_lx_no_wrap - max_pic_num_;
else
pic_num_lx = pic_num_lx_no_wrap;
DCHECK_LT(num_ref_idx_lX_active_minus1 + 1,
H264SliceHeader::kRefListModSize);
pic = dpb_.GetShortRefPicByPicNum(pic_num_lx);
if (!pic) {
DVLOG(1) << "Malformed stream, no pic num " << pic_num_lx;
return false;
}
if (ref_idx_lx > num_ref_idx_lX_active_minus1) {
DVLOG(1) << "Bounds mismatch: expected " << ref_idx_lx
<< " <= " << num_ref_idx_lX_active_minus1;
return false;
}
ShiftRightAndInsert(ref_pic_listx, ref_idx_lx,
num_ref_idx_lX_active_minus1, pic);
ref_idx_lx++;
for (int src = ref_idx_lx, dst = ref_idx_lx;
src <= num_ref_idx_lX_active_minus1 + 1; ++src) {
auto* src_pic = (*ref_pic_listx)[src].get();
int src_pic_num_lx = src_pic ? PicNumF(*src_pic) : -1;
if (src_pic_num_lx != pic_num_lx)
(*ref_pic_listx)[dst++] = (*ref_pic_listx)[src];
}
break;
case 2:
// Modify long term reference picture position.
DCHECK_LT(num_ref_idx_lX_active_minus1 + 1,
H264SliceHeader::kRefListModSize);
pic = dpb_.GetLongRefPicByLongTermPicNum(list_mod->long_term_pic_num);
if (!pic) {
DVLOG(1) << "Malformed stream, no pic num "
<< list_mod->long_term_pic_num;
return false;
}
ShiftRightAndInsert(ref_pic_listx, ref_idx_lx,
num_ref_idx_lX_active_minus1, pic);
ref_idx_lx++;
for (int src = ref_idx_lx, dst = ref_idx_lx;
src <= num_ref_idx_lX_active_minus1 + 1; ++src) {
if (LongTermPicNumF(*(*ref_pic_listx)[src]) !=
static_cast<int>(list_mod->long_term_pic_num))
(*ref_pic_listx)[dst++] = (*ref_pic_listx)[src];
}
break;
case 3:
// End of modification list.
done = true;
break;
default:
// May be recoverable.
DVLOG(1) << "Invalid modification_of_pic_nums_idc="
<< list_mod->modification_of_pic_nums_idc << " in position "
<< i;
break;
}
++list_mod;
}
// Per NOTE 2 in 8.2.4.3.2, the ref_pic_listx size in the above loop is
// temporarily made one element longer than the required final list.
// Resize the list back to its required size.
ref_pic_listx->resize(num_ref_idx_lX_active_minus1 + 1);
return true;
}
bool H264Decoder::OutputPic(scoped_refptr<H264Picture> pic) {
DCHECK(!pic->outputted);
pic->outputted = true;
// Set the color space for the picture.
pic->set_colorspace(picture_color_space_);
if (pic->nonexisting) {
DVLOG(4) << "Skipping output, non-existing frame_num: " << pic->frame_num;
return true;
}
DVLOG_IF(1, pic->pic_order_cnt < last_output_poc_)
<< "Outputting out of order, likely a broken stream: " << last_output_poc_
<< " -> " << pic->pic_order_cnt;
last_output_poc_ = pic->pic_order_cnt;
DVLOG(4) << "Posting output task for POC: " << pic->pic_order_cnt;
return accelerator_->OutputPicture(pic);
}
void H264Decoder::ClearDPB() {
// Clear DPB contents, marking the pictures as unused first.
dpb_.Clear();
last_output_poc_ = std::numeric_limits<int>::min();
}
bool H264Decoder::OutputAllRemainingPics() {
// Output all pictures that are waiting to be outputted.
if (FinishPrevFrameIfPresent() != H264Accelerator::Status::kOk)
return false;
H264Picture::Vector to_output;
dpb_.GetNotOutputtedPicsAppending(&to_output);
// Sort them by ascending POC to output in order.
std::sort(to_output.begin(), to_output.end(), POCAscCompare());
for (auto& pic : to_output) {
if (!OutputPic(pic))
return false;
}
return true;
}
bool H264Decoder::Flush() {
DVLOG(2) << "Decoder flush";
if (!OutputAllRemainingPics())
return false;
ClearDPB();
DVLOG(2) << "Decoder flush finished";
return true;
}
H264Decoder::H264Accelerator::Status H264Decoder::StartNewFrame(
const H264SliceHeader* slice_hdr) {
// TODO posciak: add handling of max_num_ref_frames per spec.
CHECK(curr_pic_.get());
DCHECK(slice_hdr);
curr_pps_id_ = slice_hdr->pic_parameter_set_id;
const H264PPS* pps = parser_.GetPPS(curr_pps_id_);
if (!pps)
return H264Accelerator::Status::kFail;
curr_sps_id_ = pps->seq_parameter_set_id;
const H264SPS* sps = parser_.GetSPS(curr_sps_id_);
if (!sps)
return H264Accelerator::Status::kFail;
max_frame_num_ = 1 << (sps->log2_max_frame_num_minus4 + 4);
int frame_num = slice_hdr->frame_num;
if (slice_hdr->idr_pic_flag)
prev_ref_frame_num_ = 0;
// 7.4.3
if (frame_num != prev_ref_frame_num_ &&
frame_num != (prev_ref_frame_num_ + 1) % max_frame_num_) {
if (!HandleFrameNumGap(frame_num))
return H264Accelerator::Status::kFail;
}
if (!InitCurrPicture(slice_hdr))
return H264Accelerator::Status::kFail;
UpdatePicNums(frame_num);
if (requires_ref_lists_) {
PrepareRefPicLists();
}
return accelerator_->SubmitFrameMetadata(sps, pps, dpb_, ref_pic_list_p0_,
ref_pic_list_b0_, ref_pic_list_b1_,
curr_pic_.get());
}
bool H264Decoder::HandleMemoryManagementOps(scoped_refptr<H264Picture> pic) {
// 8.2.5.4
for (size_t i = 0; i < std::size(pic->ref_pic_marking); ++i) {
// Code below does not support interlaced stream (per-field pictures).
H264DecRefPicMarking* ref_pic_marking = &pic->ref_pic_marking[i];
scoped_refptr<H264Picture> to_mark;
int pic_num_x;
switch (ref_pic_marking->memory_mgmnt_control_operation) {
case 0:
// Normal end of operations' specification.
return true;
case 1:
// Mark a short term reference picture as unused so it can be removed
// if outputted.
pic_num_x =
pic->pic_num - (ref_pic_marking->difference_of_pic_nums_minus1 + 1);
to_mark = dpb_.GetShortRefPicByPicNum(pic_num_x);
if (to_mark) {
to_mark->ref = false;
} else {
// |to_mark| may be null for a variety of reasons. For example, the
// video frame it refers to may have been dropped by the network, or
// the bitstream is non-conformant and the frame it refers to is
// already marked as "unused for reference," etc. In any case, it
// should be safe to ignore this case and continue processing further
// memory management control operations since the frame won't be used
// for reference after this in any case.
//
// In real life, this case was observed in https://crbug.com/1394965.
DVLOG(1) << "Invalid short ref pic num to unmark";
}
break;
case 2:
// Mark a long term reference picture as unused so it can be removed
// if outputted.
to_mark = dpb_.GetLongRefPicByLongTermPicNum(
ref_pic_marking->long_term_pic_num);
if (to_mark) {
to_mark->ref = false;
} else {
// TODO(crbug.com/40251206): consider doing the same for mmco 2 when
// we can have testing for it, as how we handle missing |to_mark| for
// mmco 1.
DVLOG(1) << "Invalid long term ref pic num to unmark";
return false;
}
break;
case 3:
// Mark a short term reference picture as long term reference.
pic_num_x =
pic->pic_num - (ref_pic_marking->difference_of_pic_nums_minus1 + 1);
to_mark = dpb_.GetShortRefPicByPicNum(pic_num_x);
if (to_mark) {
DCHECK(to_mark->ref && !to_mark->long_term);
scoped_refptr<H264Picture> long_term_mark =
dpb_.GetLongRefPicByLongTermIdx(
ref_pic_marking->long_term_frame_idx);
if (long_term_mark) {
long_term_mark->ref = false;
}
to_mark->long_term = true;
to_mark->long_term_frame_idx = ref_pic_marking->long_term_frame_idx;
} else {
DVLOG(1) << "Invalid short term ref pic num to mark as long ref";
return false;
}
break;
case 4: {
// Unmark all reference pictures with long_term_frame_idx over new max.
max_long_term_frame_idx_ =
ref_pic_marking->max_long_term_frame_idx_plus1 - 1;
H264Picture::Vector long_terms;
dpb_.GetLongTermRefPicsAppending(&long_terms);
for (size_t long_term = 0; long_term < long_terms.size(); ++long_term) {
scoped_refptr<H264Picture>& long_term_pic = long_terms[long_term];
DCHECK(long_term_pic->ref && long_term_pic->long_term);
// Ok to cast, max_long_term_frame_idx is much smaller than 16bit.
if (long_term_pic->long_term_frame_idx >
static_cast<int>(max_long_term_frame_idx_))
long_term_pic->ref = false;
}
break;
}
case 5:
// Unmark all reference pictures.
dpb_.MarkAllUnusedForRef();
max_long_term_frame_idx_ = -1;
pic->mem_mgmt_5 = true;
break;
case 6: {
// Replace long term reference pictures with current picture.
// First unmark if any existing with this long_term_frame_idx...
H264Picture::Vector long_terms;
dpb_.GetLongTermRefPicsAppending(&long_terms);
for (size_t long_term = 0; long_term < long_terms.size(); ++long_term) {
scoped_refptr<H264Picture>& long_term_pic = long_terms[long_term];
DCHECK(long_term_pic->ref && long_term_pic->long_term);
// Ok to cast, long_term_frame_idx is much smaller than 16bit.
if (long_term_pic->long_term_frame_idx ==
static_cast<int>(ref_pic_marking->long_term_frame_idx))
long_term_pic->ref = false;
}
// and mark the current one instead.
pic->ref = true;
pic->long_term = true;
pic->long_term_frame_idx = ref_pic_marking->long_term_frame_idx;
break;
}
default:
// Would indicate a bug in parser.
NOTREACHED();
}
}
return true;
}
// This method ensures that DPB does not overflow, either by removing
// reference pictures as specified in the stream, or using a sliding window
// procedure to remove the oldest one.
// It also performs marking and unmarking pictures as reference.
// See spac 8.2.5.1.
bool H264Decoder::ReferencePictureMarking(scoped_refptr<H264Picture> pic) {
// If the current picture is an IDR, all reference pictures are unmarked.
if (pic->idr) {
dpb_.MarkAllUnusedForRef();
if (pic->long_term_reference_flag) {
pic->long_term = true;
pic->long_term_frame_idx = 0;
max_long_term_frame_idx_ = 0;
} else {
pic->long_term = false;
max_long_term_frame_idx_ = -1;
}
return true;
}
// Not an IDR. If the stream contains instructions on how to discard pictures
// from DPB and how to mark/unmark existing reference pictures, do so.
// Otherwise, fall back to default sliding window process.
if (pic->adaptive_ref_pic_marking_mode_flag) {
DCHECK(!pic->nonexisting);
return HandleMemoryManagementOps(pic);
} else {
return SlidingWindowPictureMarking();
}
}
bool H264Decoder::SlidingWindowPictureMarking() {
const H264SPS* sps = parser_.GetSPS(curr_sps_id_);
if (!sps)
return false;
// 8.2.5.3. Ensure the DPB doesn't overflow by discarding the oldest picture.
int num_ref_pics = dpb_.CountRefPics();
DCHECK_LE(num_ref_pics, std::max<int>(sps->max_num_ref_frames, 1));
if (num_ref_pics == std::max<int>(sps->max_num_ref_frames, 1)) {
// Max number of reference pics reached, need to remove one of the short
// term ones. Find smallest frame_num_wrap short reference picture and mark
// it as unused.
scoped_refptr<H264Picture> to_unmark =
dpb_.GetLowestFrameNumWrapShortRefPic();
if (!to_unmark) {
DVLOG(1) << "Couldn't find a short ref picture to unmark";
return false;
}
to_unmark->ref = false;
}
return true;
}
bool H264Decoder::FinishPicture(scoped_refptr<H264Picture> pic) {
// Finish processing the picture.
// Start by storing previous picture data for later use.
if (pic->ref) {
ReferencePictureMarking(pic);
prev_ref_has_memmgmnt5_ = pic->mem_mgmt_5;
prev_ref_top_field_order_cnt_ = pic->top_field_order_cnt;
prev_ref_pic_order_cnt_msb_ = pic->pic_order_cnt_msb;
prev_ref_pic_order_cnt_lsb_ = pic->pic_order_cnt_lsb;
prev_ref_field_ = pic->field;
prev_ref_frame_num_ = pic->frame_num;
}
prev_frame_num_ = pic->frame_num;
prev_has_memmgmnt5_ = pic->mem_mgmt_5;
prev_frame_num_offset_ = pic->frame_num_offset;
// Remove unused (for reference or later output) pictures from DPB, marking
// them as such.
dpb_.DeleteUnused();
DVLOG(4) << "Finishing picture frame_num: " << pic->frame_num
<< ", entries in DPB: " << dpb_.size();
if (recovery_frame_cnt_) {
// This is the first picture after the recovery point SEI message. Validate
// `recovery_frame_cnt_` now that we are certain to have max_frame_num_.
if (*recovery_frame_cnt_ >= max_frame_num_) {
DVLOG(1) << "Invalid recovery_frame_cnt=" << *recovery_frame_cnt_
<< " (must be less than or equal to max_frame_num-1="
<< (max_frame_num_ - 1) << ")";
return false;
}
// Compute the frame_num of the first frame that should be output (D.2.8).
recovery_frame_num_ =
(*recovery_frame_cnt_ + pic->frame_num) % max_frame_num_;
DVLOG(3) << "recovery_frame_num_=" << *recovery_frame_num_;
recovery_frame_cnt_.reset();
}
// The ownership of pic will either be transferred to DPB - if the picture is
// still needed (for output and/or reference) - or we will release it
// immediately if we manage to output it here and won't have to store it for
// future reference.
// Get all pictures that haven't been outputted yet.
H264Picture::Vector not_outputted;
dpb_.GetNotOutputtedPicsAppending(¬_outputted);
// Include the one we've just decoded.
not_outputted.push_back(pic);
// Sort in output order.
std::sort(not_outputted.begin(), not_outputted.end(), POCAscCompare());
// Try to output as many pictures as we can. A picture can be output,
// if the number of decoded and not yet outputted pictures that would remain
// in DPB afterwards would at least be equal to max_num_reorder_frames.
// If the outputted picture is not a reference picture, it doesn't have
// to remain in the DPB and can be removed.
auto output_candidate = not_outputted.begin();
size_t num_remaining = not_outputted.size();
while (num_remaining > max_num_reorder_frames_ ||
// If the condition below is used, this is an invalid stream. We should
// not be forced to output beyond max_num_reorder_frames in order to
// make room in DPB to store the current picture (if we need to do so).
// However, if this happens, ignore max_num_reorder_frames and try
// to output more. This may cause out-of-order output, but is not
// fatal, and better than failing instead.
((dpb_.IsFull() && (!pic->outputted || pic->ref)) && num_remaining)) {
DVLOG_IF(1, num_remaining <= max_num_reorder_frames_)
<< "Invalid stream: max_num_reorder_frames not preserved";
if (!recovery_frame_num_ ||
// If we are decoding ahead to reach a SEI recovery point, skip
// outputting all pictures before it, to avoid outputting corrupted
// frames.
(*output_candidate)->frame_num == *recovery_frame_num_) {
recovery_frame_num_ = std::nullopt;
if (!OutputPic(*output_candidate))
return false;
}
if (!(*output_candidate)->ref) {
// Current picture hasn't been inserted into DPB yet, so don't remove it
// if we managed to output it immediately.
if (*output_candidate != pic)
dpb_.Delete(*output_candidate);
}
++output_candidate;
--num_remaining;
}
// If we haven't managed to output the picture that we just decoded, or if
// it's a reference picture, we have to store it in DPB.
if (!pic->outputted || pic->ref) {
if (dpb_.IsFull()) {
// If we haven't managed to output anything to free up space in DPB
// to store this picture, it's an error in the stream.
DVLOG(1) << "Could not free up space in DPB!";
return false;
}
dpb_.StorePic(std::move(pic));
}
secure_handle_ = 0;
return true;
}
bool H264Decoder::UpdateMaxNumReorderFrames(const H264SPS* sps) {
if (sps->vui_parameters_present_flag && sps->bitstream_restriction_flag) {
max_num_reorder_frames_ =
base::checked_cast<size_t>(sps->max_num_reorder_frames);
if (max_num_reorder_frames_ > dpb_.max_num_pics()) {
DVLOG(1)
<< "max_num_reorder_frames present, but larger than MaxDpbFrames ("
<< max_num_reorder_frames_ << " > " << dpb_.max_num_pics() << ")";
max_num_reorder_frames_ = 0;
return false;
}
return true;
}
// max_num_reorder_frames not present, infer from profile/constraints
// (see VUI semantics in spec).
if (sps->constraint_set3_flag) {
switch (sps->profile_idc) {
case 44:
case 86:
case 100:
case 110:
case 122:
case 244:
max_num_reorder_frames_ = 0;
break;
default:
max_num_reorder_frames_ = dpb_.max_num_pics();
break;
}
} else {
max_num_reorder_frames_ = dpb_.max_num_pics();
}
return true;
}
bool H264Decoder::ProcessSPS(int sps_id, bool* need_new_buffers) {
DVLOG(4) << "Processing SPS id:" << sps_id;
const H264SPS* sps = parser_.GetSPS(sps_id);
if (!sps)
return false;
*need_new_buffers = false;
if (sps->frame_mbs_only_flag == 0) {
DVLOG(1) << "frame_mbs_only_flag != 1 not supported";
return false;
}
gfx::Size new_pic_size = sps->GetCodedSize().value_or(gfx::Size());
if (new_pic_size.IsEmpty()) {
DVLOG(1) << "Invalid picture size";
return false;
}
int width_mb = new_pic_size.width() / 16;
int height_mb = new_pic_size.height() / 16;
// Verify that the values are not too large before multiplying.
if (std::numeric_limits<int>::max() / width_mb < height_mb) {
DVLOG(1) << "Picture size is too big: " << new_pic_size.ToString();
return false;
}
// Spec A.3.1 and A.3.2
// For Baseline, Constrained Baseline and Main profile, the indicated level is
// Level 1b if level_idc is equal to 11 and constraint_set3_flag is equal to 1
uint8_t level = base::checked_cast<uint8_t>(sps->level_idc);
if ((sps->profile_idc == H264SPS::kProfileIDCBaseline ||
sps->profile_idc == H264SPS::kProfileIDCConstrainedBaseline ||
sps->profile_idc == H264SPS::kProfileIDCMain) &&
level == 11 && sps->constraint_set3_flag) {
level = 9; // Level 1b
}
int max_dpb_mbs = base::checked_cast<int>(H264LevelToMaxDpbMbs(level));
if (max_dpb_mbs == 0)
return false;
// MaxDpbFrames from level limits per spec.
size_t max_dpb_frames = std::min(max_dpb_mbs / (width_mb * height_mb),
static_cast<int>(H264DPB::kDPBMaxSize));
DVLOG(1) << "MaxDpbFrames: " << max_dpb_frames
<< ", max_num_ref_frames: " << sps->max_num_ref_frames
<< ", max_dec_frame_buffering: " << sps->max_dec_frame_buffering;
// Set DPB size to at least the level limit, or what the stream requires.
size_t max_dpb_size =
std::max(static_cast<int>(max_dpb_frames),
std::max(sps->max_num_ref_frames, sps->max_dec_frame_buffering));
// Some non-conforming streams specify more frames are needed than the current
// level limit. Allow this, but only up to the maximum number of reference
// frames allowed per spec.
DVLOG_IF(1, max_dpb_size > max_dpb_frames)
<< "Invalid stream, DPB size > MaxDpbFrames";
if (max_dpb_size == 0 || max_dpb_size > H264DPB::kDPBMaxSize) {
DVLOG(1) << "Invalid DPB size: " << max_dpb_size;
return false;
}
VideoChromaSampling new_chroma_sampling = sps->GetChromaSampling();
if (new_chroma_sampling != chroma_sampling_) {
chroma_sampling_ = new_chroma_sampling;
}
if (chroma_sampling_ != VideoChromaSampling::k420) {
DVLOG(1) << "Only YUV 4:2:0 is supported";
return false;
}
VideoCodecProfile new_profile =
H264Parser::ProfileIDCToVideoCodecProfile(sps->profile_idc);
if (new_profile == VIDEO_CODEC_PROFILE_UNKNOWN) {
return false;
}
uint8_t new_bit_depth = 0;
if (!ParseBitDepth(*sps, new_bit_depth)) {
return false;
}
if (!IsValidBitDepth(new_bit_depth, new_profile)) {
DVLOG(1) << "Invalid bit depth=" << base::strict_cast<int>(new_bit_depth)
<< ", profile=" << GetProfileName(new_profile);
return false;
}
VideoColorSpace new_color_space;
// For H264, prefer the frame color space over the config.
if (sps && sps->GetColorSpace().IsSpecified()) {
new_color_space = sps->GetColorSpace();
} else if (container_color_space_.IsSpecified()) {
new_color_space = container_color_space_;
}
if (new_color_space.matrix == VideoColorSpace::MatrixID::RGB) {
// Some H.264 videos contain a VUI that specifies a color matrix of GBR,
// when they are actually ordinary YUV. H264 only supports 4:2:0 subsampling
// and BGR should only be used with 4:4:4, hence default to Rec709. See
// crbug.com/341266991.
CHECK_NE(chroma_sampling_, VideoChromaSampling::k444);
new_color_space = VideoColorSpace::REC709();
}
bool is_color_space_change = false;
if (base::FeatureList::IsEnabled(kAVDColorSpaceChanges)) {
is_color_space_change = new_color_space.IsSpecified() &&
new_color_space != picture_color_space_;
}
if (pic_size_ != new_pic_size || dpb_.max_num_pics() != max_dpb_size ||
profile_ != new_profile || bit_depth_ != new_bit_depth ||
is_color_space_change) {
if (!Flush()) {
return false;
}
DVLOG(1) << "Codec profile: " << GetProfileName(new_profile)
<< ", level: " << base::strict_cast<int>(level)
<< ", DPB size: " << max_dpb_size
<< ", Picture size: " << new_pic_size.ToString()
<< ", bit depth: " << base::strict_cast<int>(new_bit_depth)
<< ", color_space: " << new_color_space.ToString();
*need_new_buffers = true;
profile_ = new_profile;
bit_depth_ = new_bit_depth;
pic_size_ = new_pic_size;
picture_color_space_ = new_color_space;
dpb_.set_max_num_pics(max_dpb_size);
}
gfx::Rect new_visible_rect = sps->GetVisibleRect().value_or(gfx::Rect());
if (visible_rect_ != new_visible_rect) {
DVLOG(2) << "New visible rect: " << new_visible_rect.ToString();
visible_rect_ = new_visible_rect;
}
if (!UpdateMaxNumReorderFrames(sps))
return false;
DVLOG(1) << "max_num_reorder_frames: " << max_num_reorder_frames_;
return true;
}
H264Decoder::H264Accelerator::Status H264Decoder::FinishPrevFrameIfPresent() {
// If we already have a frame waiting to be decoded, decode it and finish.
if (curr_pic_) {
H264Accelerator::Status result = DecodePicture();
if (result != H264Accelerator::Status::kOk)
return result;
scoped_refptr<H264Picture> pic = curr_pic_;
curr_pic_ = nullptr;
if (!FinishPicture(pic))
return H264Accelerator::Status::kFail;
}
return H264Accelerator::Status::kOk;
}
bool H264Decoder::HandleFrameNumGap(int frame_num) {
const H264SPS* sps = parser_.GetSPS(curr_sps_id_);
if (!sps)
return false;
if (!sps->gaps_in_frame_num_value_allowed_flag) {
DVLOG(1) << "Invalid frame_num: " << frame_num;
// TODO(b:129119729, b:146914440): Youtube android app sometimes sends an
// invalid frame number after a seek. The sequence goes like:
// Seek, SPS, PPS, IDR-frame, non-IDR, ... non-IDR with invalid number.
// The only way to work around this reliably is to ignore this error.
// Video playback is not affected, no artefacts are visible.
return true;
}
DVLOG(2) << "Handling frame_num gap: " << prev_ref_frame_num_ << "->"
<< frame_num;
// 7.4.3/7-23
int unused_short_term_frame_num = (prev_ref_frame_num_ + 1) % max_frame_num_;
while (unused_short_term_frame_num != frame_num) {
auto pic = base::MakeRefCounted<H264Picture>();
if (!InitNonexistingPicture(pic, unused_short_term_frame_num))
return false;
UpdatePicNums(unused_short_term_frame_num);
if (!FinishPicture(pic))
return false;
unused_short_term_frame_num++;
unused_short_term_frame_num %= max_frame_num_;
}
return true;
}
H264Decoder::H264Accelerator::Status H264Decoder::ProcessEncryptedSliceHeader(
const std::vector<SubsampleEntry>& subsamples) {
DCHECK(curr_nalu_);
DCHECK(curr_slice_hdr_);
std::vector<base::span<const uint8_t>> spans(prior_cencv1_nalus_.begin(),
prior_cencv1_nalus_.end());
spans.emplace_back(curr_nalu_->data.get(),
base::checked_cast<size_t>(curr_nalu_->size));
std::vector<SubsampleEntry> all_subsamples(prior_cencv1_subsamples_.begin(),
prior_cencv1_subsamples_.end());
all_subsamples.insert(all_subsamples.end(), subsamples.begin(),
subsamples.end());
auto rv = accelerator_->ParseEncryptedSliceHeader(
spans, all_subsamples, secure_handle_, curr_slice_hdr_.get());
// Return now if this isn't fully processed and don't store the NALU info
// since we will get called again in the kTryAgain case, and on an error we
// want to exist.
if (rv != H264Accelerator::Status::kOk)
return rv;
// Insert this encrypted slice data as well in case this is a multi-slice
// picture.
prior_cencv1_nalus_.emplace_back(
curr_nalu_->data.get(), base::checked_cast<size_t>(curr_nalu_->size));
prior_cencv1_subsamples_.insert(prior_cencv1_subsamples_.end(),
subsamples.begin(), subsamples.end());
return rv;
}
H264Decoder::H264Accelerator::Status H264Decoder::PreprocessCurrentSlice() {
const H264SliceHeader* slice_hdr = curr_slice_hdr_.get();
DCHECK(slice_hdr);
if (IsNewPrimaryCodedPicture(curr_pic_.get(), curr_pps_id_,
parser_.GetSPS(curr_sps_id_), *slice_hdr)) {
// New picture, so first finish the previous one before processing it.
H264Accelerator::Status result = FinishPrevFrameIfPresent();
if (result != H264Accelerator::Status::kOk)
return result;
DCHECK(!curr_pic_);
if (slice_hdr->first_mb_in_slice != 0) {
DVLOG(1) << "ASO/invalid stream, first_mb_in_slice: "
<< slice_hdr->first_mb_in_slice;
return H264Accelerator::Status::kFail;
}
// If the new picture is an IDR, flush DPB.
if (slice_hdr->idr_pic_flag) {
// Output all remaining pictures, unless we are explicitly instructed
// not to do so.
if (!slice_hdr->no_output_of_prior_pics_flag) {
if (!Flush())
return H264Accelerator::Status::kFail;
}
dpb_.Clear();
last_output_poc_ = std::numeric_limits<int>::min();
}
}
return H264Accelerator::Status::kOk;
}
H264Decoder::H264Accelerator::Status H264Decoder::ProcessCurrentSlice() {
DCHECK(curr_pic_);
const H264SliceHeader* slice_hdr = curr_slice_hdr_.get();
DCHECK(slice_hdr);
if (slice_hdr->field_pic_flag == 0)
max_pic_num_ = max_frame_num_;
else
max_pic_num_ = 2 * max_frame_num_;
H264Picture::Vector ref_pic_list0, ref_pic_list1;
// If we are using full sample encryption then we do not have the information
// we need to update the ref pic lists here, but that's OK because the
// accelerator doesn't actually need to submit them in this case.
if (!slice_hdr->full_sample_encryption && requires_ref_lists_ &&
!ModifyReferencePicLists(slice_hdr, &ref_pic_list0, &ref_pic_list1)) {
return H264Accelerator::Status::kFail;
}
const H264PPS* pps = parser_.GetPPS(curr_pps_id_);
if (!pps)
return H264Accelerator::Status::kFail;
return accelerator_->SubmitSlice(pps, slice_hdr, ref_pic_list0, ref_pic_list1,
curr_pic_.get(), slice_hdr->nalu_data,
slice_hdr->nalu_size,
parser_.GetCurrentSubsamples());
}
#define SET_ERROR_AND_RETURN() \
do { \
DVLOG(1) << "Error during decode"; \
state_ = State::kError; \
return H264Decoder::kDecodeError; \
} while (0)
#define CHECK_ACCELERATOR_RESULT(func) \
do { \
H264Accelerator::Status result = (func); \
switch (result) { \
case H264Accelerator::Status::kOk: \
break; \
case H264Accelerator::Status::kTryAgain: \
DVLOG(1) << #func " needs to try again"; \
return H264Decoder::kTryAgain; \
case H264Accelerator::Status::kFail: \
case H264Accelerator::Status::kNotSupported: \
SET_ERROR_AND_RETURN(); \
} \
} while (0)
void H264Decoder::SetStream(int32_t id, const DecoderBuffer& decoder_buffer) {
const uint8_t* ptr = decoder_buffer.data();
const size_t size = decoder_buffer.size();
const DecryptConfig* decrypt_config = decoder_buffer.decrypt_config();
DCHECK(ptr);
DCHECK(size);
DVLOG(4) << "New input stream id: " << id << " at: " << (void*)ptr
<< " size: " << size;
stream_id_ = id;
current_stream_ = ptr;
current_stream_size_ = size;
current_stream_has_been_changed_ = true;
prior_cencv1_nalus_.clear();
prior_cencv1_subsamples_.clear();
if (decrypt_config) {
parser_.SetEncryptedStream(ptr, size, decrypt_config->subsamples());
current_decrypt_config_ = decrypt_config->Clone();
} else {
parser_.SetStream(ptr, size);
current_decrypt_config_ = nullptr;
}
if (decoder_buffer.side_data() && decoder_buffer.side_data()->secure_handle) {
secure_handle_ = decoder_buffer.side_data()->secure_handle;
} else {
secure_handle_ = 0;
}
}
H264Decoder::DecodeResult H264Decoder::Decode() {
if (state_ == State::kError) {
DVLOG(1) << "Decoder in error state";
return kDecodeError;
}
if (current_stream_has_been_changed_) {
// Calling H264Accelerator::SetStream() here instead of when the stream is
// originally set in case the accelerator needs to return kTryAgain.
H264Accelerator::Status result = accelerator_->SetStream(
base::span<const uint8_t>(current_stream_.get(), current_stream_size_),
current_decrypt_config_.get());
switch (result) {
case H264Accelerator::Status::kOk:
case H264Accelerator::Status::kNotSupported:
// kNotSupported means the accelerator can't handle this stream,
// so everything will be done through the parser.
break;
case H264Accelerator::Status::kTryAgain:
DVLOG(1) << "SetStream() needs to try again";
return H264Decoder::kTryAgain;
case H264Accelerator::Status::kFail:
SET_ERROR_AND_RETURN();
}
// Reset the flag so that this is only called again next time SetStream()
// is called.
current_stream_has_been_changed_ = false;
}
while (true) {
H264Parser::Result par_res;
if (!curr_nalu_) {
curr_nalu_ = std::make_unique<H264NALU>();
par_res = parser_.AdvanceToNextNALU(curr_nalu_.get());
if (par_res == H264Parser::kEOStream) {
CHECK_ACCELERATOR_RESULT(FinishPrevFrameIfPresent());
return kRanOutOfStreamData;
} else if (par_res != H264Parser::kOk) {
SET_ERROR_AND_RETURN();
}
DVLOG(4) << "New NALU: " << static_cast<int>(curr_nalu_->nal_unit_type);
}
switch (curr_nalu_->nal_unit_type) {
case H264NALU::kNonIDRSlice:
// We can't resume from a non-IDR slice unless recovery point SEI
// process is going.
if (state_ == State::kError ||
(state_ == State::kAfterReset && !recovery_frame_cnt_))
break;
[[fallthrough]];
case H264NALU::kIDRSlice: {
// TODO(posciak): the IDR may require an SPS that we don't have
// available. For now we'd fail if that happens, but ideally we'd like
// to keep going until the next SPS in the stream.
if (state_ == State::kNeedStreamMetadata) {
// We need an SPS, skip this IDR and keep looking.
break;
}
// If after reset or waiting for a key, we should be able to recover
// from an IDR. |state_|, |curr_slice_hdr_|, and |curr_pic_| are used
// to keep track of what has previously been attempted, so that after
// a retryable result is returned, subsequent calls to Decode() retry
// the call that failed previously. If it succeeds (it may not if no
// additional key has been provided, for example), then the remaining
// steps will be executed.
if (!curr_slice_hdr_) {
curr_slice_hdr_ = std::make_unique<H264SliceHeader>();
state_ = State::kParseSliceHeader;
}
if (state_ == State::kParseSliceHeader) {
// Check if the slice header is encrypted.
bool parsed_header = false;
if (current_decrypt_config_) {
const std::vector<SubsampleEntry>& subsamples =
parser_.GetCurrentSubsamples();
// There is only a single clear byte for the NALU information for
// full sample encryption, and the rest is encrypted.
if (!subsamples.empty() && subsamples[0].clear_bytes == 1) {
CHECK_ACCELERATOR_RESULT(ProcessEncryptedSliceHeader(subsamples));
parsed_header = true;
curr_slice_hdr_->pic_parameter_set_id = last_parsed_pps_id_;
}
}
if (!parsed_header) {
par_res =
parser_.ParseSliceHeader(*curr_nalu_, curr_slice_hdr_.get());
if (par_res != H264Parser::kOk)
SET_ERROR_AND_RETURN();
}
state_ = State::kTryPreprocessCurrentSlice;
}
if (state_ == State::kTryPreprocessCurrentSlice) {
CHECK_ACCELERATOR_RESULT(PreprocessCurrentSlice());
state_ = State::kEnsurePicture;
}
if (state_ == State::kEnsurePicture) {
if (curr_pic_) {
// |curr_pic_| already exists, so skip to ProcessCurrentSlice().
state_ = State::kTryCurrentSlice;
} else {
// New picture/finished previous one, try to start a new one
// or tell the client we need more surfaces.
if (secure_handle_) {
curr_pic_ = accelerator_->CreateH264PictureSecure(secure_handle_);
} else {
curr_pic_ = accelerator_->CreateH264Picture();
}
if (!curr_pic_)
return kRanOutOfSurfaces;
if (current_decrypt_config_)
curr_pic_->set_decrypt_config(current_decrypt_config_->Clone());
if (hdr_metadata_.has_value())
curr_pic_->set_hdr_metadata(hdr_metadata_);
state_ = State::kTryNewFrame;
}
}
if (state_ == State::kTryNewFrame) {
CHECK_ACCELERATOR_RESULT(StartNewFrame(curr_slice_hdr_.get()));
state_ = State::kTryCurrentSlice;
}
DCHECK_EQ(state_, State::kTryCurrentSlice);
CHECK_ACCELERATOR_RESULT(ProcessCurrentSlice());
curr_slice_hdr_.reset();
state_ = State::kDecoding;
break;
}
case H264NALU::kSPS: {
int sps_id;
CHECK_ACCELERATOR_RESULT(FinishPrevFrameIfPresent());
par_res = parser_.ParseSPS(&sps_id);
if (par_res != H264Parser::kOk)
SET_ERROR_AND_RETURN();
bool need_new_buffers = false;
if (!ProcessSPS(sps_id, &need_new_buffers)) {
SET_ERROR_AND_RETURN();
}
accelerator_->ProcessSPS(
parser_.GetSPS(sps_id),
base::span<const uint8_t>(
curr_nalu_->data.get(),
base::checked_cast<size_t>(curr_nalu_->size)));
if (state_ == State::kNeedStreamMetadata)
state_ = State::kAfterReset;
if (need_new_buffers) {
curr_pic_ = nullptr;
curr_nalu_ = nullptr;
ref_pic_list_p0_.clear();
ref_pic_list_b0_.clear();
ref_pic_list_b1_.clear();
}
// Prefer config changes over color space changes.
if (need_new_buffers) {
return kConfigChange;
}
break;
}
case H264NALU::kPPS: {
CHECK_ACCELERATOR_RESULT(FinishPrevFrameIfPresent());
par_res = parser_.ParsePPS(&last_parsed_pps_id_);
if (par_res != H264Parser::kOk)
SET_ERROR_AND_RETURN();
accelerator_->ProcessPPS(
parser_.GetPPS(last_parsed_pps_id_),
base::span<const uint8_t>(
curr_nalu_->data.get(),
base::checked_cast<size_t>(curr_nalu_->size)));
break;
}
case H264NALU::kAUD:
case H264NALU::kEOSeq:
case H264NALU::kEOStream:
if (state_ != State::kDecoding)
break;
CHECK_ACCELERATOR_RESULT(FinishPrevFrameIfPresent());
break;
case H264NALU::kSEIMessage: {
if (current_decrypt_config_) {
// If there are encrypted SEI NALUs as part of CENCv1, then we also
// need to save those so we can send them into the accelerator so it
// can decrypt the sample properly (otherwise it would be starting
// partway into a block).
const std::vector<SubsampleEntry>& subsamples =
parser_.GetCurrentSubsamples();
if (!subsamples.empty()) {
prior_cencv1_nalus_.emplace_back(
curr_nalu_->data.get(),
base::checked_cast<size_t>(curr_nalu_->size));
DCHECK_EQ(1u, subsamples.size());
prior_cencv1_subsamples_.push_back(subsamples[0]);
// Since the SEI is encrypted, do not try to parse it below as it
// may fail or yield incorrect results.
DVLOG(3) << "Skipping parsing of encrypted SEI NALU";
break;
}
}
H264SEI sei;
if (parser_.ParseSEI(&sei) != H264Parser::kOk)
break;
for (auto& sei_msg : sei.msgs) {
switch (sei_msg.type) {
case H264SEIMessage::kSEIRecoveryPoint:
// If we are after reset, we can also resume from a SEI recovery
// point (spec D.2.8) if one is present. However, if we are
// already in the process of handling one, skip any subsequent
// ones until we are done processing.
if (state_ == State::kAfterReset && !recovery_frame_cnt_ &&
!recovery_frame_num_) {
recovery_frame_cnt_ = sei_msg.recovery_point.recovery_frame_cnt;
if (0 > *recovery_frame_cnt_) {
DVLOG(1) << "Invalid recovery_frame_cnt="
<< *recovery_frame_cnt_
<< " (it must not be less then 0)";
SET_ERROR_AND_RETURN();
}
DVLOG(3) << "Recovery point SEI is found, recovery_frame_cnt_="
<< *recovery_frame_cnt_;
}
break;
case H264SEIMessage::kSEIContentLightLevelInfo:
// H264 HDR metadata may appears in the below places:
// 1. Container.
// 2. Bitstream.
// 3. Both container and bitstream.
// Thus we should also extract HDR metadata here in case we
// miss the information.
if (!hdr_metadata_.has_value()) {
hdr_metadata_.emplace();
}
hdr_metadata_->cta_861_3 =
sei_msg.content_light_level_info.ToGfx();
break;
case H264SEIMessage::kSEIMasteringDisplayInfo:
if (!hdr_metadata_.has_value()) {
hdr_metadata_.emplace();
}
hdr_metadata_->smpte_st_2086 =
sei_msg.mastering_display_info.ToGfx();
break;
default:
break;
}
}
break;
}
default:
DVLOG(4) << "Skipping NALU type: " << curr_nalu_->nal_unit_type;
break;
}
DVLOG(4) << "NALU done";
curr_nalu_.reset();
}
}
gfx::Size H264Decoder::GetPicSize() const {
return pic_size_;
}
gfx::Rect H264Decoder::GetVisibleRect() const {
return visible_rect_;
}
VideoCodecProfile H264Decoder::GetProfile() const {
return profile_;
}
uint8_t H264Decoder::GetBitDepth() const {
return bit_depth_;
}
VideoChromaSampling H264Decoder::GetChromaSampling() const {
return chroma_sampling_;
}
VideoColorSpace H264Decoder::GetVideoColorSpace() const {
return picture_color_space_;
}
std::optional<gfx::HDRMetadata> H264Decoder::GetHDRMetadata() const {
return hdr_metadata_;
}
size_t H264Decoder::GetRequiredNumOfPictures() const {
constexpr size_t kPicsInPipeline = limits::kMaxVideoFrames + 1;
return GetNumReferenceFrames() + kPicsInPipeline;
}
size_t H264Decoder::GetNumReferenceFrames() const {
// Use the maximum number of pictures in the Decoded Picture Buffer.
return dpb_.max_num_pics();
}
// static
bool H264Decoder::FillH264PictureFromSliceHeader(
const H264SPS* sps,
const H264SliceHeader& slice_hdr,
H264Picture* pic) {
DCHECK(pic);
pic->idr = slice_hdr.idr_pic_flag;
if (pic->idr)
pic->idr_pic_id = slice_hdr.idr_pic_id;
if (!slice_hdr.field_pic_flag) {
pic->field = H264Picture::FIELD_NONE;
} else {
DVLOG(1) << "Interlaced video not supported.";
return false;
}
pic->nal_ref_idc = slice_hdr.nal_ref_idc;
pic->ref = slice_hdr.nal_ref_idc != 0;
// This assumes non-interlaced stream.
pic->frame_num = pic->pic_num = slice_hdr.frame_num;
if (!sps)
return false;
pic->pic_order_cnt_type = sps->pic_order_cnt_type;
switch (pic->pic_order_cnt_type) {
case 0:
pic->pic_order_cnt_lsb = slice_hdr.pic_order_cnt_lsb;
pic->delta_pic_order_cnt_bottom = slice_hdr.delta_pic_order_cnt_bottom;
break;
case 1:
pic->delta_pic_order_cnt0 = slice_hdr.delta_pic_order_cnt0;
pic->delta_pic_order_cnt1 = slice_hdr.delta_pic_order_cnt1;
break;
case 2:
break;
default:
NOTREACHED();
}
return true;
}
// static
bool H264Decoder::IsNewPrimaryCodedPicture(const H264Picture* curr_pic,
int curr_pps_id,
const H264SPS* sps,
const H264SliceHeader& slice_hdr) {
if (!curr_pic)
return true;
// 7.4.1.2.4, assumes non-interlaced.
if (slice_hdr.frame_num != curr_pic->frame_num ||
slice_hdr.pic_parameter_set_id != curr_pps_id ||
slice_hdr.nal_ref_idc != curr_pic->nal_ref_idc ||
slice_hdr.idr_pic_flag != curr_pic->idr ||
(slice_hdr.idr_pic_flag &&
(slice_hdr.idr_pic_id != curr_pic->idr_pic_id ||
// If we have two consecutive IDR slices, and the second one has
// first_mb_in_slice == 0, treat it as a new picture.
// Per spec, idr_pic_id should not be equal in this case (and we should
// have hit the condition above instead, see spec 7.4.3 on idr_pic_id),
// but some encoders neglect changing idr_pic_id for two consecutive
// IDRs. Work around this by checking if the next slice contains the
// zeroth macroblock, i.e. data that belongs to the next picture.
// Do not perform this check for CENCv1 encrypted content as the
// first_mb_in_slice field is not correctly populated in that case.
(slice_hdr.first_mb_in_slice == 0 &&
!slice_hdr.full_sample_encryption))))
return true;
if (!sps)
return false;
if (sps->pic_order_cnt_type == curr_pic->pic_order_cnt_type) {
if (curr_pic->pic_order_cnt_type == 0) {
if (slice_hdr.pic_order_cnt_lsb != curr_pic->pic_order_cnt_lsb ||
slice_hdr.delta_pic_order_cnt_bottom !=
curr_pic->delta_pic_order_cnt_bottom)
return true;
} else if (curr_pic->pic_order_cnt_type == 1) {
if (slice_hdr.delta_pic_order_cnt0 != curr_pic->delta_pic_order_cnt0 ||
slice_hdr.delta_pic_order_cnt1 != curr_pic->delta_pic_order_cnt1)
return true;
}
}
return false;
}
} // namespace media