1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
media / gpu / h264_rate_controller.cc [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/h264_rate_controller.h"
#include "base/logging.h"
#include "base/time/time.h"
#include "media/gpu/h264_rate_control_util.h"
namespace media {
namespace {
// Base temporal layer index.
constexpr size_t kBaseLayerIndex = 0;
// Maximum FPS used in the tradeoff calculation between FPS and maximum QP.
constexpr float kFpsMax = 60;
// Base layer to enhancement layer data rate ratio. It is used in fixed delta QP
// mode only.
constexpr float kLayerRateRatio = 0.8f;
// Initial QP size value used in initialization of the estimators. The value is
// chosen arbitrarily bases on common values for QP and P frame size.
constexpr float kInitQPSize = 100000.0f;
// The constant kIntraFrameMAD is the average MAD between the original and
// predicted pixels for intra frames in H.264 video. The average is calculated
// over a set of frames with a common complexity level.
constexpr float kIntraFrameMAD = 768.0f;
// Arbitrarily chosen value for the minimum QP of the first encoded intra frame.
constexpr uint32_t kMinFirstFrameQP = 34u;
// The constants kRDSlope and kRDYIntercept are the slope and Y-intercept of the
// linear approximation in the expression
// log2(bpp) = a * log2(mad / q_step) + b.
// a - kRDSlope
// b - kRDYIntercept
// The optimal values for kRDSlope and kRDYIntercept are derived from the
// analysis of rate and distortion values over a large set of data.
constexpr float kRDSlope = 0.91f;
constexpr float kRDYIntercept = -6.0f;
// The arrays define line segments in the tradeoff function between FPS and
// maximum QP .
constexpr struct {
float fps;
float qp;
} kFPS2QPTradeoffs[] = {{0.0f, 51.0f},
{5.0f, 42.0f},
{10.0f, 41.0f},
{15.0f, 40.0f},
{30.0f, 37.0f},
{kFpsMax, 37.0f},
{std::numeric_limits<float>::max(), 20.0f}};
// Window size in number of frames for the Moving Window. The average framerate
// is based on the last received frames within the window.
constexpr int kWindowFrameCount = 3;
// Returns a budget in bytes per frame for the given frame rate and average
// bitrate. The budget represents the amount of data equally distributed among
// frames.
size_t GetRateBudget(float frame_rate, uint32_t avg_bitrate) {
return static_cast<size_t>(avg_bitrate / 8.0f / frame_rate);
}
// Returns the FPS value related to the Max QP value. The function is
// represented by line segments defined in the array `kFPS2QPTradeoffs`.
float Fps2MaxQP(float fps) {
size_t num_elems = sizeof(kFPS2QPTradeoffs) / sizeof(kFPS2QPTradeoffs[0]);
for (size_t i = 0; i < num_elems - 1; ++i) {
if (fps >= kFPS2QPTradeoffs[i].fps && fps < kFPS2QPTradeoffs[i + 1].fps) {
return h264_rate_control_util::ClampedLinearInterpolation(
fps, kFPS2QPTradeoffs[i].fps, kFPS2QPTradeoffs[i + 1].fps,
kFPS2QPTradeoffs[i].qp, kFPS2QPTradeoffs[i + 1].qp);
}
}
NOTREACHED();
}
// Returns the FPS value related to the Max QP value. The returned value is
// a constant value obtained from the `kFPS2QPTradeoffs` array.
float MaxQP2Fps(int max_qp) {
size_t num_elems = sizeof(kFPS2QPTradeoffs) / sizeof(kFPS2QPTradeoffs[0]);
for (size_t i = 0; i < num_elems - 1; ++i) {
if (max_qp <= kFPS2QPTradeoffs[i].qp &&
max_qp > kFPS2QPTradeoffs[i + 1].qp) {
// Do not use linear interpolation to be less aggressive on FPS changes.
return kFPS2QPTradeoffs[i + 1].fps;
}
}
NOTREACHED();
}
} // namespace
H264RateControllerSettings::H264RateControllerSettings() = default;
H264RateControllerSettings::~H264RateControllerSettings() = default;
H264RateControllerSettings::H264RateControllerSettings(
const H264RateControllerSettings&) = default;
H264RateControllerSettings& H264RateControllerSettings::operator=(
const H264RateControllerSettings&) = default;
std::partial_ordering H264RateControllerSettings::operator<=>(
const H264RateControllerSettings& other) const {
if (auto res = frame_size.width() <=> other.frame_size.width(); res != 0) {
return res;
}
if (auto res = frame_size.height() <=> other.frame_size.height(); res != 0) {
return res;
}
if (auto res = fixed_delta_qp <=> other.fixed_delta_qp; res != 0) {
return res;
}
if (auto res = frame_rate_max <=> other.frame_rate_max; res != 0) {
return res;
}
if (auto res = num_temporal_layers <=> other.num_temporal_layers; res != 0) {
return res;
}
if (auto res = gop_max_duration.InMilliseconds() <=>
other.gop_max_duration.InMilliseconds();
res != 0) {
return res;
}
return std::lexicographical_compare_three_way(
layer_settings.begin(), layer_settings.end(),
other.layer_settings.begin(), other.layer_settings.end());
}
H264RateController::Layer::Layer(H264RateControllerLayerSettings settings,
float expected_fps,
base::TimeDelta short_term_window_size,
base::TimeDelta long_term_window_size)
: hrd_buffer_(settings.hrd_buffer_size, settings.avg_bitrate),
src_frame_rate_(kWindowFrameCount),
expected_fps_(expected_fps),
min_qp_(settings.min_qp),
max_qp_(settings.max_qp),
short_term_estimator_(short_term_window_size,
kInitQPSize,
GetInitialSizeCorrection(settings)),
long_term_estimator_(long_term_window_size,
kInitQPSize,
GetInitialSizeCorrection(settings)),
estimator_error_(long_term_window_size) {
DCHECK_GT(settings.hrd_buffer_size, 0u);
DCHECK_GT(settings.avg_bitrate, 0u);
DCHECK_GT(expected_fps, 0.0f);
}
H264RateController::Layer::~Layer() = default;
void H264RateController::Layer::ShrinkHRDBuffer(base::TimeDelta timestamp) {
hrd_buffer_.Shrink(timestamp);
}
void H264RateController::Layer::AddFrameBytes(size_t frame_bytes,
base::TimeDelta frame_timestamp) {
hrd_buffer_.AddFrameBytes(frame_bytes, frame_timestamp);
}
void H264RateController::Layer::AddFrameTimestamp(
base::TimeDelta frame_timestamp) {
src_frame_rate_.AddSample(frame_timestamp);
}
void H264RateController::Layer::SetBufferParameters(size_t buffer_size,
uint32_t avg_bitrate,
uint32_t peak_bitrate,
bool ease_hrd_reduction) {
hrd_buffer_.SetParameters(buffer_size, avg_bitrate, peak_bitrate,
ease_hrd_reduction);
}
size_t H264RateController::Layer::GetBufferBytesAtTime(
base::TimeDelta timestamp) const {
return static_cast<size_t>(hrd_buffer_.GetBytesAtTime(timestamp));
}
size_t H264RateController::Layer::GetBufferBytesRemainingAtTime(
base::TimeDelta timestamp) const {
return static_cast<size_t>(hrd_buffer_.GetBytesRemainingAtTime(timestamp));
}
float H264RateController::Layer::GetFrameRateMean() const {
// Return the default value until the buffer is filled up.
if (src_frame_rate_.Count() < kWindowFrameCount) {
return expected_fps_;
}
base::TimeDelta timestamp_min = src_frame_rate_.Min();
base::TimeDelta timestamp_max = src_frame_rate_.Max();
base::TimeDelta duration = timestamp_max - timestamp_min;
// Return the default value if the duration is too small or too big. Limiting
// values are chosen arbitrarily.
if (duration <= base::Milliseconds(1) || duration > base::Minutes(5)) {
return expected_fps_;
}
return (kWindowFrameCount - 1) / duration.InSecondsF();
}
size_t H264RateController::Layer::EstimateShortTermFrameSize(
uint32_t qp,
uint32_t qp_prev) const {
return short_term_estimator_.Estimate(qp, qp_prev);
}
size_t H264RateController::Layer::EstimateLongTermFrameSize(
uint32_t qp,
uint32_t qp_prev) const {
return long_term_estimator_.Estimate(qp, qp_prev);
}
uint32_t H264RateController::Layer::EstimateShortTermQP(
size_t target_frame_bytes,
uint32_t qp_prev) const {
return short_term_estimator_.InverseEstimate(target_frame_bytes, qp_prev);
}
uint32_t H264RateController::Layer::EstimateLongTermQP(
size_t target_frame_bytes,
uint32_t qp_prev) const {
return long_term_estimator_.InverseEstimate(target_frame_bytes, qp_prev);
}
size_t H264RateController::Layer::GetFrameSizeEstimatorError() const {
return static_cast<size_t>(estimator_error_.GetStdDeviation());
}
void H264RateController::Layer::UpdateFrameSizeEstimator(
size_t frame_bytes,
uint32_t qp,
uint32_t qp_prev,
base::TimeDelta elapsed_time) {
short_term_estimator_.Update(frame_bytes, qp, qp_prev, elapsed_time);
long_term_estimator_.Update(frame_bytes, qp, qp_prev, elapsed_time);
// Compute the per-frame rate prediction error.
estimator_error_.AddValue(
pred_p_frame_size_ - static_cast<float>(frame_bytes), elapsed_time);
}
float H264RateController::Layer::GetInitialSizeCorrection(
H264RateControllerLayerSettings settings) const {
// The initial size correction is set to 0.3 x frame budget. The multiplier is
// chosen arbitrarily.
float bytes_per_frame_avg = settings.avg_bitrate / (8 * settings.frame_rate);
return 0.3f * bytes_per_frame_avg;
}
H264RateController::H264RateController(H264RateControllerSettings settings)
: target_fps_(GetTargetFps(settings)),
frame_rate_max_(settings.frame_rate_max),
frame_size_(settings.frame_size),
fixed_delta_qp_(settings.fixed_delta_qp),
num_temporal_layers_(settings.num_temporal_layers),
gop_max_duration_(settings.gop_max_duration),
content_type_(settings.content_type) {
DCHECK_GT(settings.num_temporal_layers, 0u);
DCHECK_LE(settings.num_temporal_layers,
h264_rate_control_util::kMaxNumTemporalLayers);
DCHECK_GT(target_fps_, 1.0f);
DCHECK_GT(frame_rate_max_, 1.0f);
// Short-term window is 5 x frame duration with the lowest value limited at
// 300 ms. The values are chosen arbitrarily.
base::TimeDelta short_term_window_size = base::Milliseconds(std::max(
static_cast<int>(5.0f * base::Time::kMillisecondsPerSecond / target_fps_),
300));
// Set long-term window to 3 x HRD buffer size. Use uint64_t, as it might
// overflow uint32_t.
base::TimeDelta long_term_window_size = base::Milliseconds(
3 *
static_cast<uint64_t>(
settings.layer_settings[kBaseLayerIndex].hrd_buffer_size * 8) *
base::Time::kMillisecondsPerSecond /
settings.layer_settings[kBaseLayerIndex].avg_bitrate);
for (auto& tls : settings.layer_settings) {
temporal_layers_.emplace_back(std::make_unique<Layer>(
tls, target_fps_, short_term_window_size, long_term_window_size));
}
}
H264RateController::~H264RateController() = default;
void H264RateController::EstimateIntraFrameQP(base::TimeDelta frame_timestamp) {
H264RateController::Layer& base_layer = *temporal_layers_[kBaseLayerIndex];
++frame_number_;
// Update the frame rate statistics.
base_layer.AddFrameTimestamp(frame_timestamp);
if (0 == frame_number_) {
target_fps_ = std::min(target_fps_, frame_rate_max_);
}
// Estimating the target intra frame encoded frame size.
size_t target_bytes_frame = GetTargetBytesForIntraFrame(frame_timestamp);
// Applying Rate-Distortion model.
const float bpp =
target_bytes_frame * 8.0f / (frame_size_.width() * frame_size_.height());
const float q_step =
kIntraFrameMAD /
(std::pow(bpp / std::pow(2, kRDYIntercept), 1 / kRDSlope));
uint32_t curr_qp = std::clamp(h264_rate_control_util::QStepSize2QP(q_step),
h264_rate_control_util::kQPMin,
h264_rate_control_util::kQPMax);
if (0 == frame_number_) {
// The initial long term QP. The subtracted value is chosen arbitrarily.
base_layer.update_long_term_qp(curr_qp - 3);
// Limit minimum QP value for the first IDR.
curr_qp = std::max(curr_qp, kMinFirstFrameQP);
} else if (frame_number_ > 0) {
// Prevent quality flickering.
// If the previous frame was dropped, make sure QP will increase.
if (base_layer.is_buffer_full()) {
// base_layer.curr_frame_qp should point to the QP used for dropped
// frame.
if (curr_qp > base_layer.curr_frame_qp() + 2) {
curr_qp = (curr_qp + base_layer.curr_frame_qp() + 2) / 2;
} else {
curr_qp = base_layer.curr_frame_qp() + 2;
}
} else if (base_layer.last_frame_type() ==
H264RateController::FrameType::kPFrame) {
// Limit QP for IDR frames based on the QP estimated for the previous P
// frame. The offset for the minimum value is a constant, while the offset
// for the maximum value is calclated as a linear function of the frame
// rate. The constants are chosen arbitrarily, based on the analysis of
// the real use cases.
constexpr float kMinQPOffsetForIDR = -3.0f;
constexpr float kMaxQPOffsetForIDRLowerLimit = 6.0f;
constexpr float kMaxQPOffsetForIDRUpperLimit = 15.0f;
constexpr float kFrameRateToMaxQPSlope = -0.67f;
constexpr float kFrameRateToMaxQPYIntercept = 16.0f;
float max_qp_offset_for_idr =
kFrameRateToMaxQPSlope * base_layer.GetFrameRateMean() +
kFrameRateToMaxQPYIntercept;
max_qp_offset_for_idr =
std::clamp(max_qp_offset_for_idr, kMaxQPOffsetForIDRLowerLimit,
kMaxQPOffsetForIDRUpperLimit);
const float last_qp =
std::max(base_layer.long_term_qp(), base_layer.last_frame_qp());
curr_qp = static_cast<uint32_t>(
std::clamp(static_cast<float>(curr_qp), last_qp + kMinQPOffsetForIDR,
last_qp + max_qp_offset_for_idr));
} else if (base_layer.last_frame_type() ==
H264RateController::FrameType::kIFrame) {
curr_qp = std::clamp(curr_qp, base_layer.last_frame_qp() - 1,
base_layer.last_frame_qp() + 3);
}
}
// Limit highest possible quality.
base_layer.update_curr_frame_qp(
std::clamp(curr_qp, base_layer.min_qp(), base_layer.max_qp()));
base_layer.update_long_term_qp(std::clamp(base_layer.long_term_qp(),
base_layer.min_qp(),
h264_rate_control_util::kQPMax));
last_idr_timestamp_ = frame_timestamp;
}
void H264RateController::EstimateInterFrameQP(size_t temporal_id,
base::TimeDelta frame_timestamp) {
H264RateController::Layer& curr_layer = *temporal_layers_[temporal_id];
H264RateController::Layer& base_layer = *temporal_layers_[kBaseLayerIndex];
++frame_number_;
// Update the frame rate statistics.
curr_layer.AddFrameTimestamp(frame_timestamp);
// Compute a baselayer QP that together with layer delta QP's fit the channel
// rates.
if (frame_number_ > 2) {
base_layer.update_long_term_qp(GetInterFrameLongTermQP(temporal_id));
}
curr_layer.update_long_term_qp(std::clamp(base_layer.long_term_qp(),
curr_layer.min_qp(),
h264_rate_control_util::kQPMax));
// The enhancement layer QP in Fixed Delta QP mode is calculated by adding a
// fixed difference to the base layer's QP. In the case of buffer overflow, a
// statistical model is employed for QP estimation.
if (fixed_delta_qp_ && temporal_id > kBaseLayerIndex &&
!curr_layer.is_buffer_full()) {
int delta_qp = fixed_delta_qp_.value();
// delta_qp is reduced if the QP estimation for the last base layer frame is
// lower than the minimum QP.
if (base_layer.undershoot_delta_qp() > 0) {
delta_qp = std::max(
fixed_delta_qp_.value() - base_layer.undershoot_delta_qp(), 0);
}
curr_layer.update_curr_frame_qp(base_layer.curr_frame_qp() + delta_qp);
return;
}
// For the fixed delta QP, take the buffer parameters from the topmost layer.
const size_t buffer_layer_id =
fixed_delta_qp_ ? num_temporal_layers_ - 1 : temporal_id;
uint32_t max_rate_bytes_per_sec =
temporal_layers_[buffer_layer_id]->average_bitrate() / 8;
size_t buffer_size = temporal_layers_[buffer_layer_id]->buffer_size();
int buffer_level_current =
temporal_layers_[buffer_layer_id]->GetBufferBytesAtTime(frame_timestamp);
size_t frame_size_target = GetTargetBytesForInterFrame(
temporal_id, max_rate_bytes_per_sec, buffer_size, buffer_level_current,
frame_timestamp);
curr_layer.update_last_frame_size_target(frame_size_target);
uint32_t curr_qp = GetInterFrameShortTermQP(temporal_id, frame_size_target);
curr_qp = ClipInterFrameQP(curr_qp, temporal_id, frame_timestamp);
// Don't use post-fill here because estimated error can be inaccurate (scene
// change) and bias the decision.
const bool hrd_buffer_is_full =
buffer_level_current >= static_cast<int>(buffer_size);
if (hrd_buffer_is_full) {
// HRD buffer is already full: use max QP to limit the damage.
curr_qp = curr_layer.max_qp();
}
// Limit the quality.
curr_layer.update_curr_frame_qp(
std::clamp(curr_qp, curr_layer.min_qp(), curr_layer.max_qp()));
curr_layer.update_pred_p_frame_size(curr_layer.EstimateShortTermFrameSize(
curr_layer.curr_frame_qp(), curr_layer.last_frame_qp()));
}
void H264RateController::FinishIntraFrame(size_t access_unit_bytes,
base::TimeDelta frame_timestamp) {
FinishLayerData(kBaseLayerIndex, FrameType::kIFrame, access_unit_bytes,
frame_timestamp);
FinishLayerPreviousFrameTimestamp(kBaseLayerIndex, frame_timestamp);
last_idr_timestamp_ = frame_timestamp;
if (0 == frame_number_) {
// To minimize risks of HRD violation on first P frames, first frame QP is
// used to readjust target FPS.
float buffer_level_norm =
static_cast<float>(
temporal_layers_[kBaseLayerIndex]->last_frame_buffer_bytes()) /
temporal_layers_[kBaseLayerIndex]->buffer_size();
if (0.5f < buffer_level_norm) {
const float max_qp_from_fps = Fps2MaxQP(target_fps_);
if (temporal_layers_[kBaseLayerIndex]->long_term_qp() > max_qp_from_fps) {
target_fps_ = MaxQP2Fps(static_cast<int>(
temporal_layers_[kBaseLayerIndex]->long_term_qp()));
}
}
}
SetLastTsOvershootingFrame(kBaseLayerIndex, frame_timestamp);
}
void H264RateController::FinishInterFrame(size_t temporal_id,
size_t access_unit_bytes,
base::TimeDelta frame_timestamp) {
FinishLayerData(temporal_id, FrameType::kPFrame, access_unit_bytes,
frame_timestamp);
H264RateController::Layer& curr_layer = *temporal_layers_[temporal_id];
const base::TimeDelta elapsed_time =
h264_rate_control_util::ClampedTimestampDiff(
frame_timestamp, curr_layer.previous_frame_timestamp());
curr_layer.UpdateFrameSizeEstimator(access_unit_bytes,
curr_layer.curr_frame_qp(),
curr_layer.last_frame_qp(), elapsed_time);
FinishLayerPreviousFrameTimestamp(temporal_id, frame_timestamp);
SetLastTsOvershootingFrame(temporal_id, frame_timestamp);
}
void H264RateController::UpdateFrameSize(const gfx::Size& frame_size) {
frame_size_ = frame_size;
}
void H264RateController::GetHRDBufferFullness(
base::span<int> buffer_fullness,
base::TimeDelta frame_timestamp) const {
for (size_t tl = kBaseLayerIndex;
tl < std::min(buffer_fullness.size(), num_temporal_layers_); ++tl) {
buffer_fullness[tl] =
(100 * temporal_layers_[tl]->GetBufferBytesAtTime(frame_timestamp)) /
static_cast<int>(temporal_layers_[tl]->buffer_size());
}
}
void H264RateController::FinishLayerData(size_t temporal_id,
FrameType frame_type,
size_t frame_bytes,
base::TimeDelta frame_timestamp) {
// Update HRDs for all temporal leyars.
for (size_t tl = temporal_id; tl < num_temporal_layers_; ++tl) {
temporal_layers_[tl]->AddFrameBytes(frame_bytes, frame_timestamp);
temporal_layers_[tl]->update_last_frame_qp(
temporal_layers_[tl]->curr_frame_qp());
temporal_layers_[tl]->update_last_frame_type(frame_type);
}
}
void H264RateController::FinishLayerPreviousFrameTimestamp(
size_t temporal_id,
base::TimeDelta frame_timestamp) {
// Update timestamps for all tamporal layers.
for (size_t tl = temporal_id; tl < num_temporal_layers_; ++tl) {
temporal_layers_[tl]->update_previous_frame_timestamp(frame_timestamp);
}
}
void H264RateController::SetLastTsOvershootingFrame(
size_t temporal_id,
base::TimeDelta frame_timestamp) {
for (size_t tl = temporal_id; tl < num_temporal_layers_; ++tl) {
bool check_overshoot = !fixed_delta_qp_ || tl == num_temporal_layers_ - 1;
if (!check_overshoot || !temporal_layers_[tl]->is_buffer_full()) {
last_ts_overshooting_frame_ = base::TimeDelta::Max();
} else if (last_ts_overshooting_frame_ == base::TimeDelta::Max()) {
last_ts_overshooting_frame_ = frame_timestamp;
}
}
}
size_t H264RateController::GetTargetBytesForIntraFrame(
base::TimeDelta frame_timestamp) const {
// Find the layer with the minimum buffer bytes remaining. The remaining
// bytes are used to estimate the target bytes for the intra frame. Since
// the intra frame is encoded in the base layer, the intra frame bytes are
// added to the buffers of all upper layers. Thats's why the intra encoded
// frame size is estimated based on the fullest buffer among all layers.
const size_t starting_layer_id =
fixed_delta_qp_ ? num_temporal_layers_ - 1 : kBaseLayerIndex;
size_t min_bytes_remaining_layer_id = kBaseLayerIndex;
int bytes_remaining = INT32_MAX;
for (size_t tl = starting_layer_id; tl < num_temporal_layers_; ++tl) {
int bytes_remaining_tl =
temporal_layers_[tl]->GetBufferBytesRemainingAtTime(frame_timestamp);
if (bytes_remaining > bytes_remaining_tl) {
bytes_remaining = bytes_remaining_tl;
min_bytes_remaining_layer_id = tl;
}
}
const size_t buffer_bytes =
temporal_layers_[min_bytes_remaining_layer_id]->GetBufferBytesAtTime(
frame_timestamp);
const size_t hrd_buffer_size =
temporal_layers_[min_bytes_remaining_layer_id]->buffer_size();
// The minimum target intra frame fill up is 0.5 x HRD size.
size_t min_bytes_target = 0;
if (hrd_buffer_size / 2 >= buffer_bytes) {
min_bytes_target = hrd_buffer_size / 2 - buffer_bytes;
}
// The target fill up should be above the minimum value. The minimum value is
// calculated by multiplying the average budget of the encoded frame by a
// value from the range 1 to 4. The multiplier is 4 x frame_budget for 15fps
// (and above) and 1x for 3.75 fps (and below). It is 4x for the desktop
// video source. The boundary values are chosen arbitrarily.
float intra_frame_multiplier =
(content_type_ == VideoEncodeAccelerator::Config::ContentType::kDisplay)
? 4.0f
: std::clamp(
temporal_layers_[starting_layer_id]->GetFrameRateMean() / 3.75f,
1.0f, 4.0f);
size_t bytes_target =
std::max(min_bytes_target,
static_cast<size_t>(
GetRateBudget(
temporal_layers_[starting_layer_id]->GetFrameRateMean(),
temporal_layers_[starting_layer_id]->average_bitrate()) *
intra_frame_multiplier));
bytes_target = std::min(bytes_target, hrd_buffer_size);
return bytes_target;
}
size_t H264RateController::GetTargetBytesForInterFrame(
size_t temporal_id,
uint32_t max_rate_bytes_per_sec,
size_t buffer_size,
int buffer_level_current,
base::TimeDelta frame_timestamp) const {
// The long-term frame size is calculated based on short-term stats and
// long-term QP parameters.
size_t frame_size_long_term =
temporal_layers_[temporal_id]->EstimateShortTermFrameSize(
temporal_layers_[temporal_id]->long_term_qp(),
temporal_layers_[temporal_id]->last_frame_qp());
// Calculate bitrate allocated for the current layer. This value doesn't
// include the bitrate of the lower layers. In case of fixed delta QP, the
// the bitrate ratio between layers is fixed.
uint32_t curr_layer_bitrate;
if (fixed_delta_qp_ && num_temporal_layers_ > 1) {
DCHECK_EQ(num_temporal_layers_,
h264_rate_control_util::kMaxNumTemporalLayers);
curr_layer_bitrate = static_cast<uint32_t>(
temporal_layers_[kBaseLayerIndex + 1]->average_bitrate() *
kLayerRateRatio);
} else {
uint32_t lower_layer_bitrate =
temporal_id == kBaseLayerIndex
? 0u
: temporal_layers_[temporal_id - 1]->average_bitrate();
curr_layer_bitrate =
temporal_layers_[temporal_id]->average_bitrate() - lower_layer_bitrate;
}
float frame_rate = std::clamp(
temporal_layers_[temporal_id]->GetFrameRateMean(), 1.0f, target_fps_);
size_t frame_size_budget =
static_cast<size_t>(curr_layer_bitrate / 8 / frame_rate);
float frame_size_deviation =
static_cast<float>(fabs(static_cast<int>(frame_size_long_term) -
static_cast<int>(frame_size_budget))) /
frame_size_budget;
float frame_size_compress =
h264_rate_control_util::ClampedLinearInterpolation(
frame_size_deviation, 0.5f, 3.0f, 0.1f, 0.9f);
int frame_size_target =
static_cast<int>(static_cast<int>(frame_size_budget) +
(static_cast<int>(frame_size_long_term) -
static_cast<int>(frame_size_budget)) *
(1 - frame_size_compress));
DCHECK_GT(frame_size_target, 0);
// Correct the target frame size based on current buffer level.
size_t buffer_target_low = frame_size_budget;
size_t buffer_target_high = std::max(frame_size_budget, buffer_size / 5);
// The remaining time to the end of GOP.
base::TimeDelta frame_remaining_gop = base::Milliseconds(800);
if (gop_max_duration_ > base::TimeDelta() &&
buffer_target_high > buffer_target_low) {
frame_remaining_gop =
last_idr_timestamp_ - frame_timestamp + gop_max_duration_;
}
// Size correction window is a linear transformation of the remaining time in
// GOP.
uint32_t size_correction_window =
static_cast<uint32_t>(h264_rate_control_util::ClampedLinearInterpolation(
static_cast<float>(frame_remaining_gop.InMilliseconds()), 0.0f,
2000.0f, 200.0f, 800.0f));
base::TimeDelta buffer_duration = base::Milliseconds(
static_cast<float>(buffer_size) / max_rate_bytes_per_sec *
base::Time::kMillisecondsPerSecond);
int size_correction = 0;
if (buffer_level_current + frame_size_target >
static_cast<int>(buffer_target_high)) {
// Windowed overshoot prevention.
uint32_t win = buffer_duration.InMilliseconds() * 2;
size_correction_window = std::min(size_correction_window, win);
size_correction = static_cast<int>(
-(static_cast<int>(buffer_level_current) + frame_size_target -
static_cast<int>(buffer_target_high)) /
static_cast<float>(size_correction_window) / frame_rate *
base::Time::kMillisecondsPerSecond);
} else if (buffer_level_current + frame_size_target <
static_cast<int>(buffer_target_low)) {
// Windowed undershoot prevention.
uint32_t win = buffer_duration.InMilliseconds();
size_correction_window = std::min(size_correction_window, win);
size_correction =
static_cast<int>((static_cast<int>(buffer_target_low) -
buffer_level_current - frame_size_target) /
static_cast<float>(size_correction_window) /
frame_rate * base::Time::kMillisecondsPerSecond);
}
frame_size_target = std::clamp(frame_size_target + size_correction,
frame_size_target / 5, frame_size_target * 5);
size_t frame_size_error =
temporal_layers_[temporal_id]->GetFrameSizeEstimatorError();
// Instantaneous undershoot prevention (buffer should not be empty after
// the frame is removed).
int buf_level_pre_fill_next_frame = buffer_level_current + frame_size_target -
static_cast<int>(frame_size_budget);
if (buf_level_pre_fill_next_frame - static_cast<int>(frame_size_error) < 0) {
frame_size_target -= buf_level_pre_fill_next_frame;
frame_size_target += frame_size_error;
}
// Instantaneous overshoot prevention (buffer should not overshoot after
// the frame is added).
int buf_level_post_fill = buffer_level_current + frame_size_target;
if (buf_level_post_fill + frame_size_error > buffer_size) {
frame_size_target -= buf_level_post_fill - static_cast<int>(buffer_size);
frame_size_target -= frame_size_error;
}
frame_size_target =
std::max(frame_size_target, static_cast<int>(frame_size_budget / 5));
return static_cast<size_t>(frame_size_target);
}
uint32_t H264RateController::GetInterFrameShortTermQP(
size_t temporal_id,
size_t frame_size_target) {
uint32_t curr_qp = temporal_layers_[temporal_id]->EstimateShortTermQP(
frame_size_target, temporal_layers_[temporal_id]->last_frame_qp());
curr_qp = std::clamp(curr_qp, h264_rate_control_util::kQPMin,
h264_rate_control_util::kQPMax);
if (fixed_delta_qp_) {
temporal_layers_[temporal_id]->update_undershoot_delta_qp(
static_cast<int>(temporal_layers_[temporal_id]->min_qp()) -
static_cast<int>(curr_qp));
}
return curr_qp;
}
uint32_t H264RateController::GetInterFrameLongTermQP(size_t temporal_id) {
float target_rate_bytes_per_sec = static_cast<float>(
temporal_layers_[kBaseLayerIndex]->average_bitrate() / 8);
float frame_rate = temporal_layers_[kBaseLayerIndex]->GetFrameRateMean();
size_t target_frame_bytes =
static_cast<uint32_t>(target_rate_bytes_per_sec / frame_rate);
uint32_t long_term_qp = temporal_layers_[temporal_id]->EstimateLongTermQP(
target_frame_bytes, temporal_layers_[temporal_id]->last_frame_qp());
// Does this baselayer QP fit the channel rate? If not, increase it.
constexpr int kMaxQPIter = 10;
constexpr float kBitrateThreshold = 1.1f;
for (int i = 0; i < kMaxQPIter; i++) {
size_t layer_bytes =
temporal_layers_[temporal_id]->EstimateLongTermFrameSize(
long_term_qp, temporal_layers_[temporal_id]->last_frame_qp());
float bitrate = 8 * layer_bytes * frame_rate;
if (bitrate >
temporal_layers_[temporal_id]->average_bitrate() * kBitrateThreshold) {
long_term_qp += 1;
} else {
break;
}
}
return std::clamp(long_term_qp, h264_rate_control_util::kQPMin,
h264_rate_control_util::kQPMax);
}
uint32_t H264RateController::ClipInterFrameQP(uint32_t curr_qp,
size_t temporal_id,
base::TimeDelta frame_timestamp) {
// Decrease the minimum QP limit by 1 when the frame rate falls below 3 fps.
constexpr float kMinQPFrameRateThreshold = 3.0f;
// Maximum Delta QP between consecutive layers.
constexpr int kMaxDeltaQP = 6;
uint32_t min_qp = h264_rate_control_util::kQPMin,
max_qp = h264_rate_control_util::kQPMax;
if (temporal_id == kBaseLayerIndex) {
if (temporal_layers_[kBaseLayerIndex]->last_frame_qp() > 0) {
min_qp = temporal_layers_[kBaseLayerIndex]->last_frame_qp() -
(temporal_layers_[kBaseLayerIndex]->GetFrameRateMean() <
kMinQPFrameRateThreshold
? 2
: 1);
max_qp = std::max(temporal_layers_[kBaseLayerIndex]->last_frame_qp() + 3,
(temporal_layers_[kBaseLayerIndex]->min_qp() +
temporal_layers_[kBaseLayerIndex]->max_qp()) /
2);
}
} else {
min_qp = temporal_layers_[kBaseLayerIndex]->curr_frame_qp();
max_qp = temporal_layers_[kBaseLayerIndex]->curr_frame_qp() + kMaxDeltaQP;
}
// QP coupling between temporal layers.
// Raise base QP if enhancement layer buffer is in danger.
if (!fixed_delta_qp_ && num_temporal_layers_ > 1) {
std::array<int, 2> buffer_fullness_array = {0, 0};
base::span<int> buffer_fullness_values(buffer_fullness_array);
GetHRDBufferFullness(buffer_fullness_values, frame_timestamp);
int enhance_buffer_fullness = buffer_fullness_values[kBaseLayerIndex + 1];
if (limit_base_qp_ && temporal_id == kBaseLayerIndex) {
uint32_t enhance_qp =
temporal_layers_[kBaseLayerIndex + 1]->curr_frame_qp();
uint32_t min_base_qp;
if (enhance_buffer_fullness > 95) {
min_base_qp = enhance_qp - 2;
} else if (enhance_buffer_fullness > 90) {
min_base_qp = enhance_qp - 3;
} else if (enhance_buffer_fullness > 80) {
min_base_qp = enhance_qp - 4;
} else if (enhance_buffer_fullness > 70) {
min_base_qp = enhance_qp - 5;
} else {
min_base_qp = enhance_qp - 6;
}
min_base_qp = std::max(min_base_qp, enhance_qp - kMaxDeltaQP);
min_qp = std::max(min_qp, min_base_qp);
} else if (temporal_id > kBaseLayerIndex) {
int layer_delta =
static_cast<int>(curr_qp) -
static_cast<int>(temporal_layers_[kBaseLayerIndex]->curr_frame_qp());
int qp_trend =
static_cast<int>(curr_qp) -
static_cast<int>(temporal_layers_[temporal_id]->last_frame_qp());
if (layer_delta >= kMaxDeltaQP) {
if (enhance_buffer_fullness > 60 && qp_trend > 0) {
limit_base_qp_ = true;
}
} else {
if (limit_base_qp_) {
if (enhance_buffer_fullness < 35 && qp_trend < 0) {
limit_base_qp_ = false;
}
}
}
}
} else if (num_temporal_layers_ > 1 && temporal_id == kBaseLayerIndex) {
if (temporal_layers_[kBaseLayerIndex + 1]->curr_frame_qp() >
temporal_layers_[kBaseLayerIndex]->curr_frame_qp() +
fixed_delta_qp_.value_or(0)) {
// Delta QP greater than `fixed_delta_qp_` const means enhancement layer
// QP has been raised due to HRD overflow. Make sure the following base
// layer QP follows.
min_qp = std::max(min_qp,
temporal_layers_[kBaseLayerIndex + 1]->curr_frame_qp() -
fixed_delta_qp_.value_or(0));
}
}
// Raise min QP if previous frame has been dropped.
if (temporal_layers_[temporal_id]->is_buffer_full()) {
// curr_frame_qp should point to the QP used for the dropped frame.
uint32_t lower_bound =
std::min(temporal_layers_[temporal_id]->curr_frame_qp() + 2,
h264_rate_control_util::kQPMax);
min_qp = std::clamp(min_qp, lower_bound, h264_rate_control_util::kQPMax);
}
// Min QP may have been raised. Need to make sure max_qp >= min_qp. Also,
// avoid too low maximum QP value. The lowest maximum QP value is chosen
// arbitrarily.
constexpr uint32_t kMaxQPLowestValue = 28u;
max_qp = std::clamp(max_qp, min_qp, h264_rate_control_util::kQPMax);
max_qp =
std::clamp(max_qp, kMaxQPLowestValue, h264_rate_control_util::kQPMax);
// QP range continues growing as long as frames overshoot. Out of order
// timestamps are ignored.
constexpr int kQPStepDuration = 33;
if (last_ts_overshooting_frame_ != base::TimeDelta::Max() &&
frame_timestamp > last_ts_overshooting_frame_) {
base::TimeDelta delta_ts_overshooting_frame =
frame_timestamp - last_ts_overshooting_frame_;
uint32_t delta_qp =
std::max(delta_ts_overshooting_frame.InMilliseconds() / kQPStepDuration,
delta_ts_overshooting_frame.InMilliseconds() *
delta_ts_overshooting_frame.InMilliseconds() /
(kQPStepDuration * kQPStepDuration));
max_qp += delta_qp;
min_qp += delta_qp;
}
return std::clamp(curr_qp, min_qp, max_qp);
}
float H264RateController::GetTargetFps(
H264RateControllerSettings settings) const {
DCHECK_EQ(settings.layer_settings.size(), settings.num_temporal_layers);
return settings.layer_settings[settings.num_temporal_layers - 1].frame_rate;
}
} // namespace media