1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
media / gpu / h264_rate_controller.h [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MEDIA_GPU_H264_RATE_CONTROLLER_H_
#define MEDIA_GPU_H264_RATE_CONTROLLER_H_
#include <vector>
#include "base/moving_window.h"
#include "media/gpu/frame_size_estimator.h"
#include "media/gpu/hrd_buffer.h"
#include "media/gpu/media_gpu_export.h"
#include "media/video/video_encode_accelerator.h"
namespace media {
struct MEDIA_GPU_EXPORT H264RateControllerLayerSettings {
H264RateControllerLayerSettings() = default;
~H264RateControllerLayerSettings() = default;
H264RateControllerLayerSettings(const H264RateControllerLayerSettings&) =
default;
H264RateControllerLayerSettings& operator=(
const H264RateControllerLayerSettings&) = default;
bool operator==(const H264RateControllerLayerSettings&) const = default;
std::partial_ordering operator<=>(
const H264RateControllerLayerSettings&) const = default;
// Average bitrate of the layer in bits per second. The bitrate includes
// the bits from all lower layers.
uint32_t avg_bitrate = 0u;
uint32_t peak_bitrate = 0u;
// HRD buffer size in bytes.
size_t hrd_buffer_size = 0u;
// Minimum QP for the layer.
uint32_t min_qp = 0;
// Maximum QP for the layer.
uint32_t max_qp = 0;
// Layer frame rate.
float frame_rate = 0.0f;
};
struct MEDIA_GPU_EXPORT H264RateControllerSettings {
H264RateControllerSettings();
~H264RateControllerSettings();
H264RateControllerSettings(const H264RateControllerSettings&);
H264RateControllerSettings& operator=(const H264RateControllerSettings&);
bool operator==(const H264RateControllerSettings& other) const = default;
std::partial_ordering operator<=>(
const H264RateControllerSettings& other) const;
// Frame size.
gfx::Size frame_size;
// Fixed delta QP between layers.
// When `fixed_delta_qp` is set and the video stream scalability mode is L1T2,
// the QP of the higher layer is always increased by `fixed_delta_qp` compared
// to the base layer. This parameter has no meaning in non scalable video
// encoding.
std::optional<int> fixed_delta_qp;
// Maximum source frame rate.
float frame_rate_max = 0.0f;
// Number of temporal layers.
size_t num_temporal_layers = 0u;
// Maximum GOP duration. 0 for infinite.
base::TimeDelta gop_max_duration;
// Content type of the video source.
VideoEncodeAccelerator::Config::ContentType content_type =
VideoEncodeAccelerator::Config::ContentType::kCamera;
bool ease_hrd_reduction = false;
// Layer settings for each temporal layer.
std::vector<H264RateControllerLayerSettings> layer_settings;
};
// H264RateController class implements a rate control algorithm for H.264 video
// encoder. The algorithm adjusts the QP for each frame, aiming to keep the
// video stream bitrate close to the target bitrate. The controller supports
// up to two temporal layers, each with its own HRD buffer. The HRD buffer
// stores the encoded frames from the current layer and all the lower layers
// that it depens on.
//
// The prediction of the QP parameter for intra encoded frames is based on the
// R-D model, using the expected size of the encoded frame as an input.
// For inter encoded frames, the QP is calculated based on the long-term and
// short-term statistics of the estamated QP and frame size, the prediction
// error of the frame size prediction for the previously encoded frames,
// and the HRD buffer fullness.
//
// The QP values used for encoding the inter predicted frames (P frames) are
// estimated from the statistics of the previous frames and the expected frame
// size. The estimation engine holds the short-term and long-term statistics for
// each temporal layer. The QP is further modified according to the HRD buffer
// fullness and the limits of the QP range. If rate controller is configured for
// the fixed delta QP between layers (Fixed Delta QP mode), the QP for the
// current layer is calculated by adding a constant value to the previous
// layer's QP.
class MEDIA_GPU_EXPORT H264RateController {
public:
enum class FrameSizeEstimatorType { kShortTerm, kLongTerm };
enum class FrameType { kPFrame, kIFrame };
class MEDIA_GPU_EXPORT Layer {
public:
Layer(H264RateControllerLayerSettings settings,
float expected_fps,
base::TimeDelta short_term_window_size,
base::TimeDelta long_term_window_size);
~Layer();
Layer(const Layer&) = delete;
Layer& operator=(const Layer&) = delete;
uint32_t curr_frame_qp() const { return curr_frame_qp_; }
void update_curr_frame_qp(uint32_t qp) { curr_frame_qp_ = qp; }
uint32_t last_frame_qp() const { return last_frame_qp_; }
void update_last_frame_qp(uint32_t qp) { last_frame_qp_ = qp; }
uint32_t long_term_qp() const { return long_term_qp_; }
void update_long_term_qp(uint32_t qp) { long_term_qp_ = qp; }
uint32_t min_qp() const { return min_qp_; }
uint32_t max_qp() const { return max_qp_; }
int undershoot_delta_qp() const { return undershoot_delta_qp_; }
void update_undershoot_delta_qp(int qp) { undershoot_delta_qp_ = qp; }
// Returns true if the HRD buffer for the temporal layer is full.
bool is_buffer_full() const { return hrd_buffer_.frame_overshooting(); }
// Returns the current HRD buffer size.
size_t buffer_size() const { return hrd_buffer_.buffer_size(); }
// Returns the current HRD buffer bitrate.
uint32_t average_bitrate() const { return hrd_buffer_.average_bitrate(); }
FrameType last_frame_type() const { return last_frame_type_; }
void update_last_frame_type(FrameType frame_type) {
last_frame_type_ = frame_type;
}
size_t last_frame_buffer_bytes() const {
return hrd_buffer_.last_frame_buffer_bytes();
}
base::TimeDelta previous_frame_timestamp() const {
return previous_frame_timestamp_;
}
void update_previous_frame_timestamp(base::TimeDelta timestamp) {
previous_frame_timestamp_ = timestamp;
}
size_t pred_p_frame_size() const { return pred_p_frame_size_; }
void update_pred_p_frame_size(size_t size) { pred_p_frame_size_ = size; }
size_t last_frame_size_target_for_testing() const {
return last_frame_size_target_;
}
void update_last_frame_size_target(size_t size) {
last_frame_size_target_ = size;
}
// Shrinks HRD buffer according to the current frame timestamp.
void ShrinkHRDBuffer(base::TimeDelta timestamp);
// Adds the size of the encoded frame to the HRD buffer.
void AddFrameBytes(size_t frame_bytes, base::TimeDelta frame_timestamp);
// Adds the timestamp of the encoded frame to the frame rate estimator.
void AddFrameTimestamp(base::TimeDelta frame_timestamp);
// Reconfigures the HRD buffer with the new parameters.
void SetBufferParameters(size_t buffer_size,
uint32_t avg_bitrate,
uint32_t peak_bitrate,
bool ease_hrd_reduction);
// Returns the HRD buffer fullness at the specified time.
size_t GetBufferBytesAtTime(base::TimeDelta timestamp) const;
// Returns the remaining space in HRD buffer at the given time.
size_t GetBufferBytesRemainingAtTime(base::TimeDelta timestamp) const;
// Returns the mean frame rate.
float GetFrameRateMean() const;
// Estimates the expected frame size for the next P frame using the
// short-term and long-term statistics from the preceding frames.
size_t EstimateShortTermFrameSize(uint32_t qp, uint32_t qp_prev) const;
size_t EstimateLongTermFrameSize(uint32_t qp, uint32_t qp_prev) const;
// Estimates the expected QP for the next P frame using the short-term and
// long-term statistics from the preceding frames.
uint32_t EstimateShortTermQP(size_t target_frame_bytes,
uint32_t qp_prev) const;
uint32_t EstimateLongTermQP(size_t target_frame_bytes,
uint32_t qp_prev) const;
// Returns the standard deviation of the estimated size error for the
// previous frames. The filter window matches the size of the long-term
// window.
size_t GetFrameSizeEstimatorError() const;
// Updates the estimators with the QP and actual encoded size of the current
// frame.
void UpdateFrameSizeEstimator(size_t frame_bytes,
uint32_t qp,
uint32_t qp_prev,
base::TimeDelta elapsed_time);
private:
// Returns the initial size correction for the estimators.
float GetInitialSizeCorrection(
H264RateControllerLayerSettings settings) const;
// HRD buffer for the layer.
HRDBuffer hrd_buffer_;
// Moving min-max filter for the source frame rate estimation.
base::MovingMinMax<base::TimeDelta> src_frame_rate_;
// Expected frame rate for the layer.
float expected_fps_;
// Current frame QP.
uint32_t curr_frame_qp_ = 0;
// Last frame QP.
uint32_t last_frame_qp_ = 0;
// Estimated average QP for future frames.
uint32_t long_term_qp_ = 0;
// Minimum and maximum QPs for the layer.
uint32_t min_qp_ = 0;
uint32_t max_qp_ = 0;
// An undershoot in QP estimation below the minimum QP.
int undershoot_delta_qp_ = 0;
// Frame type of last non-dropped frame.
FrameType last_frame_type_ = FrameType::kPFrame;
// Timestamp of the previous frame.
base::TimeDelta previous_frame_timestamp_ = base::Microseconds(-1);
// Predicted frame size using current frame QP.
size_t pred_p_frame_size_ = 0u;
// Frame size estimators for short-term and long-term frame size prediction.
FrameSizeEstimator short_term_estimator_;
FrameSizeEstimator long_term_estimator_;
// Predicted vs actual encoded frame size.
ExponentialMovingAverage estimator_error_;
// Target frame size for the next inter encoded frame. This value is stored
// for the testing purposes.
size_t last_frame_size_target_ = 0u;
};
explicit H264RateController(H264RateControllerSettings settings);
~H264RateController();
H264RateController(const H264RateController& other) = delete;
H264RateController& operator=(const H264RateController& other) = delete;
// Returns a temporal layer referenced by the index.
Layer& temporal_layers(size_t index) {
CHECK_LT(index, temporal_layers_.size());
return *temporal_layers_[index];
}
float target_fps_for_testing() const { return target_fps_; }
// The rate controller restarts the estimation from the initial state.
void reset_frame_number() { frame_number_ = -1; }
// The method estimates the QP parameter for the next intra encoded frame
// based on the current buffer fullness. It uses a rate-distortion model
// that assumes the following:
//
// - q_step - Quantizer step size
// q_step = 5 / 8 * 2^(qp / 6)
//
// - mad is the Mean Absolute Difference of the residuals in intra frame
// prediction. Since this value cannot be retrieved from the Media
// Foundation system, it is approximated by a constant value calculated for
// the average frame content complexity.
//
// - bpp - Bits per pixel
// bpp = frame_size_in_bits / (frame_width * frame_height)
//
// We assume that the binary logarithm of the bits per pixel value is linearly
// dependent on the binary logarithm of the ratio between MAD and Q step.
//
// log2(bpp) = a * log2(mad / q_step) + b
//
// When a = 2^b, bpp can expressed as
//
// bpp = a * (mad / q_step)^m, and q_step is
//
// q_step = mad / ( (bpp/a)^(1/m) )
//
// The QP for the frame encoding is obtained from the q_step using the
// formula:
// qp = 6 * log2(q_step * 8 / 5)
//
// For the first intra encoded frame, the minimum value of the QP is limited
// to 34.
//
// The QP is further modified using the following rules:
// 1. When the HRD buffer is full, the QP for the current frame equals to
// curr_qp = last_base_layer_qp + 2
// - when curr_qp <= last_base_layer_qp + 2
// curr_qp = (curr_qp + last_base_layer_qp + 2) / 2
// - when curr_qp > last_base_layer_qp + 2
// 2. When the previous frame is a P frame
// min_qp_offset_for_idr = -3
// max_qp_offset_for_idr = 16 - 2 / 3 * base_layer_frame_rate
// last_frame_qp = max(long_term_qp, last_base_layer_qp)
// The lower and upper limits for intra frame QP are:
// qp_min = last_frame_qp + min_qp_offset_for_idr
// qp_max = last_frame_qp + max_qp_offset_for_idr
// 3. When the previous frame is an IDR frame
// The limiting values for the QP are:
// qp_min = last_base_layer_qp - 1
// qp_max = last_base_layer_qp + 3
void EstimateIntraFrameQP(base::TimeDelta frame_timestamp);
// Estimates Quantization Parameter for inter encoded frames. The estimation
// procedure has the following steps:
//
// 1. Estimate long-term QP based on stats from the previous frames
// The long-term QP is derived from the target frame size, the QP from the
// previous frame, and the long-term QP stats. The target frame size
// represents available budget per frame, which depends on the average
// bitrate and the current framerate.
// After long-term QP estimation, the QP parameter is used to predict the
// size of the next encoded frame. If the frame size doesn't satisfy the
// bitrate requirements for the current layer, the method makes up to ten
// attempts to find the correct QP by increasing the QP value by one in
// each iteration.
//
// 2. Calculate QP in fixed delta QP mode for the enhanced layer
// When the fixed delta QP mode is enabled, the QP for the enhancement
// layer is a fixed difference to the base layer's QP. The QP value is
// obtained using the statistical model if buffer overrun is detected for
// the current layer.
//
// 3. Calculate the target frame size for the current frame
// To calculate the target frame size, we first obtain the following
// parameters:
// - frame_size_long_term - the estimated frame size based on long-term
// parameters and short-term stats;
// - frame_size_budget - the average budget in the HRD buffer for one
// frame.
//
// These expression are used to calculate the initial target frame size:
//
// frame_size_deviation = abs(frame_size_long_term - frame_size_budget) /
// frame_size_budget
//
// frame_size_compress - the value is derived from frame_size_deviation by
// applying clamped linear interpolation from range [0.5, 3] to range
// [0.1, 0.9].
//
// frame_size_target = frame_size_budget + (1 - frame_size_compress) *
// (frame_size_long_term - frame_size_budget)
//
// The target frame size is corrected to keep the buffer fullness within
// predefined limits. The remaining time to the end of the GOP affects the
// correction, so that a smaller frame size is estimated when the IDR
// frame is about to occur soon. We use these calculations to obtain the
// correction:
//
// buffer_target_low = frame_size_budget
// buffer_target_high = 0.2 * buffer_size
//
// size_correction_window - remaining time to the end of the GOP is
// transformed from the range [0, 2000] to the range [200, 800]
//
// frame_duration = 1 / frame_rate
//
// In overflow case
// owerflow_size =
// frame_size_target + buffer_level_current - buffer_target_high
// size_correction =
// -overflow_size * frame_duration / size_correction_window
//
// In underflow case
// underflow_size =
// buffer_target_low - (frame_size_target + buffer_level_current)
// size_correction =
// underflow_size * frame_duration / size_correction_window
//
// frame_size_target += size_correction
//
// In the final step, the instantaneous buffer undershoot and overshoot are
// prevented.
//
// Undershoot prevention
// buf_level_pre_fill_next_frame is the buffer level just before the next
// frame is encoded.
// buf_level_pre_fill_next_frame =
// buffer_level_current + frame_size_target - frame_size_budget
// If the possibility for undershoot is detected, the frame size is
// frame_size_target +=
// frame_size_error - buf_level_pre_fill_next_frame
//
// Overshoot prevention
// buf_level_post_fill is the buffer level right after adding the current
// frame to the buffer.
// buf_level_post_fill = buffer_level_current + frame_size_target
// If there is a possibility for overshoot, the frame size is
// frame_size_target -=
// buf_level_post_fill - buffer_size + frame_size_error
//
// frame_size_error is obtained from the stats of the difference between
// the predicted and the actual frame size.
//
// 4. Calculate the current QP from the target frame size and the short-term
// stats
// The short-term frame size estimator component calculates the QP based on
// the target frame size and the QP value used for encoding of the previous
// frame.
//
// 5. Clip the current QP to fulfill the HRD buffer fullness requirements
// In the final step, the upper and lower bounds for the QP value are
// determined.
// The initial values for the QP limits are obtained through the following
// calculations:
// - base layer
// qp_min = last_base_layer_qp - 1 if FPS >= 3
// qp_min = last_base_layer_qp - 2 if FPS < 3
// qp_max = max(last_base_layer_qp + 3,
// (base_layer_qp_min + base_layer_qp_max) / 2)
// - enhancement layers
// qp_min = last_base_layer_qp
// qp_max = last_base_layer_qp + 6
//
// The min_qp is further adjusted to align with the HRD buffer fullness
// requirements when two temporal layers are encoded.
// If the rate controller is not in fixed delta QP mode and the enhancement
// layer's buffer exceeds 60% capacity, with a QP difference between the
// base and enhancement layers greater than 6, and an increment in the
// enhancement layer's QP is observed, the QP clipping process shifts to
// Limit Base QP mode. Here, the base layer's minimum QP value is adjusted
// based on the enhancement layer's buffer fullness, adhering to these
// rules:
// - buffer_fullness > 95% -> base_layer_min_qp = enhance_layer_qp - 2
// - buffer_fullness > 90% -> base_layer_min_qp = enhance_layer_qp - 3
// - buffer_fullness > 80% -> base_layer_min_qp = enhance_layer_qp - 4
// - buffer_fullness > 70% -> base_layer_min_qp = enhance_layer_qp - 5
// - otherwise -> base_layer_min_qp = enhance_layer_qp - 6
// The QP clipping reverts to normal mode once the enhancement layer's
// buffer fullness drops below 35% and a QP decrease is detected in the
// enhancement layer.
// In fixed delta QP mode, when the QP difference between the enhancement
// and the base layer exceeds 4, the the min_qp for the base layer is
// computed with the following expression:
// qp_min = last_enhance_layer_qp - 4.
// A QP difference greater than 4 indicates that the frame's QP in the
// enhancement layer has been elevated beyond the upper limit due to HRD
// buffer overflow.
//
// If an HRD buffer overflow is detected in the current layer, the min_qp is
// set to the last QP value used for that layer incremented by 2.
//
// The minimum value of max_qp is limited to 28.
//
// When an HRD buffer overflow occurs, the frame's timestamp is captured in
// the `last_ts_overshooting_frame_` variable. For each 33 milliseconds that
// pass following this timestamp, both the min_qp and max_qp are increased
// by 1.
void EstimateInterFrameQP(size_t temporal_id,
base::TimeDelta frame_timestamp);
// The method executes the following operations:
// - appends the lengths of the encoded bytes to the HRD buffers,
// - updates the layer data,
// - adjusts the target frames per second following the encoding of the first
// frame.
void FinishIntraFrame(size_t access_unit_bytes,
base::TimeDelta frame_timestamp);
// The method passes through the following steps:
// - updates the HRD buffers, the short-term and long-term frame size
// estimators, with the size of the encoded frame,
// - calculates the frame size estimation error and adds it to the error
// stats,
// - updates additional layer data.
void FinishInterFrame(size_t temporal_id,
size_t access_unit_bytes,
base::TimeDelta frame_timestamp);
// Updates the frame size. The frame size is used in QP estimation for intra
// encoded frames.
void UpdateFrameSize(const gfx::Size& frame_size);
// The array passed as a parameter stores the HRD buffer fullness for each
// temporal layer as a percentage of the HRD buffer size.
void GetHRDBufferFullness(base::span<int> buffer_fullness,
base::TimeDelta picture_timestamp) const;
private:
// The HRD buffers are updated with the encoded frame size. Last frame QP and
// last frame type for the current layer are updated. The method updates all
// HRD buffers for the layers that depend on the current layer.
void FinishLayerData(size_t temporal_id,
FrameType frame_type,
size_t frame_bytes,
base::TimeDelta frame_timestamp);
// Updates the timestamp of the previous frame for the current layer.
void FinishLayerPreviousFrameTimestamp(size_t temporal_id,
base::TimeDelta frame_timestamp);
// Captures the timestamp of the frame if HRD buffer overflow occurred.
void SetLastTsOvershootingFrame(size_t temporal_id,
base::TimeDelta frame_timestamp);
// The method calculates the target bytes for the intra encoded frame, which
// are used to estimate the QP value. The target bytes depend on the remaining
// HRD buffer size and the available budget per frame.
size_t GetTargetBytesForIntraFrame(base::TimeDelta frame_timestamp) const;
// Returns the target bytes for the next inter encoded frame. The target bytes
// depend on the fullness of the HRD buffer, the average bitrate for the
// layer, and the remaining time to the end of the GOP.
size_t GetTargetBytesForInterFrame(size_t temporal_id,
uint32_t max_rate_bytes_per_sec,
size_t buffer_size,
int buffer_level_current,
base::TimeDelta frame_timestamp) const;
// Estimates the QP for the current frame based on the target frame size.
uint32_t GetInterFrameShortTermQP(size_t temporal_id,
size_t frame_size_target);
// The method estimates the QP for the current frame based on the target frame
// size and the long-term QP. The QP is clipped to fulfill the HRD buffer
// fullness requirements.
uint32_t GetInterFrameLongTermQP(size_t temporal_id);
// Applying the constraints to the final QP value based on the HRD buffer
// fullness.
uint32_t ClipInterFrameQP(uint32_t curr_qp,
size_t temporal_id,
base::TimeDelta picture_timestamp);
// Returns target FPS extracted from layer settings.
float GetTargetFps(H264RateControllerSettings settings) const;
// Temporal layers configured for the current video stream.
std::vector<std::unique_ptr<Layer>> temporal_layers_;
// FPS that the rate controller recommends.
float target_fps_;
// Maximum source frame rate.
const float frame_rate_max_;
// Frame size of the video stream.
gfx::Size frame_size_;
// QP delta value in Fixed Delta QP mode. It's not defined in non Fixed Delta
// QP mode.
const std::optional<int> fixed_delta_qp_;
// Indicates base QP should be raised due to upper layer HRD constraints.
bool limit_base_qp_ = false;
// Number of temporal layers.
const size_t num_temporal_layers_;
// Maximum duration of the Group of Pictures.
const base::TimeDelta gop_max_duration_;
// Video content type: camera or display.
const VideoEncodeAccelerator::Config::ContentType content_type_;
// Timestamp of the latest IDR frame.
base::TimeDelta last_idr_timestamp_;
// Timestamp of the latest frame which overshoots buffer.
base::TimeDelta last_ts_overshooting_frame_ = base::TimeDelta::Max();
// Current frame number. The initial value is -1. It is incremented by 1 with
// every call to QP estimation method for the video frames.
int frame_number_ = -1;
};
} // namespace media
#endif // MEDIA_GPU_H264_RATE_CONTROLLER_H_