1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365

media / gpu / hrd_buffer_unittest.cc [blame]

// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/gpu/hrd_buffer.h"

#include <array>

#include "testing/gtest/include/gtest/gtest.h"

namespace media {
namespace {
constexpr int kCommonFps = 30;
constexpr base::TimeDelta kCommonBufferDelay = base::Milliseconds(1000);
constexpr uint32_t kCommonAvgBitrate = 1000000;   // bits per second
constexpr uint32_t kCommonPeakBitrate = 2000000;  // bits per second

// Test HRDBufferTest runs the test frame size sequence in various
// scenarios and check whether the component behaves as expected.
class HRDBufferTest : public testing::Test {
 public:
  HRDBufferTest() = default;

  void SetUp() override {
    hrd_buffer_ = std::make_unique<HRDBuffer>(0, 0);
    EXPECT_EQ(0u, hrd_buffer_->buffer_size());
    EXPECT_EQ(0u, hrd_buffer_->average_bitrate());
  }

 protected:
  // Runs a loop of 60 frames with two intra encoded frames in the sequence.
  // Returns the index of the last frame.
  int RunTestSequence(uint32_t avg_bitrate, int fps, int start_frame_index) {
    // Generate steady encoded frame sizes aligned with the requested bitrate.
    constexpr int kFrameCount = 60;
    constexpr int kFirstIntraFrameIndex = 0;
    constexpr int kSecondIntraFrameIndex = 30;
    size_t frame_size = avg_bitrate / 8 / fps;
    std::vector<size_t> frames;
    for (int i = 0; i < kFrameCount; ++i) {
      frames.push_back(frame_size);
    }

    frames[kFirstIntraFrameIndex] = frames[kFirstIntraFrameIndex] * 3;
    frames[kSecondIntraFrameIndex] = frames[kSecondIntraFrameIndex] * 3;

    base::TimeDelta timestamp = base::Microseconds(
        start_frame_index * base::Time::kMicrosecondsPerSecond / fps);
    for (size_t encoded_size : frames) {
      hrd_buffer_->Shrink(timestamp);

      hrd_buffer_->AddFrameBytes(encoded_size, timestamp);

      timestamp += base::Microseconds(base::Time::kMicrosecondsPerSecond / fps);
    }

    return start_frame_index + kFrameCount;
  }

  // Size of HRD buffer calculated from the buffer delay is in milliseconds.
  int GetBufferSizeFromDelay(uint32_t avg_bitrate,
                             base::TimeDelta buffer_delay) const {
    return static_cast<int>(avg_bitrate * buffer_delay.InSecondsF() / 8);
  }

  int GetBufferFullness(base::TimeDelta timestamp) const {
    return 100 * hrd_buffer_->GetBytesAtTime(timestamp) /
           hrd_buffer_->buffer_size();
  }

  std::unique_ptr<HRDBuffer> hrd_buffer_;
};

// Test Cases

// Running a simple sequence of frames and taking a snapshot of the parameters
// after the last frame is added. The parameters must strictly satisfy the
// predefined state.
TEST_F(HRDBufferTest, RunBasicBufferTest) {
  constexpr int kExpectedBufferFullness = 13;
  constexpr int kExpectedBufferBytes = 16601;
  constexpr int kExpectedBufferBytesRemaining = 108399;
  constexpr int kExpectedLastFrameBufferBytes = 20771;
  constexpr int kExpectedFrameOvershooting = false;
  constexpr int kExpectedBufferFullnessBadTimestamp = 16;

  size_t buffer_size =
      GetBufferSizeFromDelay(kCommonAvgBitrate, kCommonBufferDelay);

  hrd_buffer_->SetParameters(buffer_size, kCommonAvgBitrate, kCommonPeakBitrate,
                             false);
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate, hrd_buffer_->average_bitrate());

  int start_frame_index = 0;
  int last_frame_index =
      RunTestSequence(kCommonAvgBitrate, kCommonFps, start_frame_index);

  base::TimeDelta timestamp = base::Microseconds(
      last_frame_index * base::Time::kMicrosecondsPerSecond / kCommonFps);
  EXPECT_EQ(kExpectedBufferFullness, GetBufferFullness(timestamp));
  EXPECT_EQ(kExpectedBufferBytes, hrd_buffer_->GetBytesAtTime(timestamp));
  EXPECT_EQ(kExpectedBufferBytesRemaining,
            hrd_buffer_->GetBytesRemainingAtTime(timestamp));
  EXPECT_EQ(kExpectedLastFrameBufferBytes,
            hrd_buffer_->last_frame_buffer_bytes());
  EXPECT_EQ(kExpectedFrameOvershooting, hrd_buffer_->frame_overshooting());

  // Check behavior when invalid timestamp is provided.
  timestamp =
      base::Microseconds(last_frame_index * base::Time::kMicrosecondsPerSecond /
                         kCommonFps) -
      base::Microseconds(60000);
  EXPECT_EQ(kExpectedBufferFullnessBadTimestamp, GetBufferFullness(timestamp));
}

// The test runs the predefined test sequence three times using different buffer
// parameters. A snapshot of the buffer state is taken after each sequence
// run. The snapshot must strictly satisfy the predefined state.
TEST_F(HRDBufferTest, CheckBufferParameterChange) {
  constexpr int kExpectedBufferFullness1 = 13;
  constexpr int kExpectedBufferBytes1 = 16601;
  constexpr int kExpectedBufferBytesRemaining1 = 108399;
  constexpr int kExpectedLastFrameBufferBytes1 = 20771;
  constexpr int kExpectedBufferFullness2 = 0;
  constexpr int kExpectedBufferBytes2 = 0;
  constexpr int kExpectedBufferBytesRemaining2 = 125000;
  constexpr int kExpectedLastFrameBufferBytes2 = 4166;
  constexpr int kExpectedBufferFullness3 = 81;
  constexpr int kExpectedBufferBytes3 = 101328;
  constexpr int kExpectedBufferBytesRemaining3 = 23672;
  constexpr int kExpectedLastFrameBufferBytes3 = 104108;

  size_t buffer_size =
      GetBufferSizeFromDelay(kCommonAvgBitrate, kCommonBufferDelay);

  hrd_buffer_->SetParameters(buffer_size, kCommonAvgBitrate, kCommonPeakBitrate,
                             false);
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate, hrd_buffer_->average_bitrate());

  int start_frame_index = 0;
  int last_frame_index =
      RunTestSequence(kCommonAvgBitrate, kCommonFps, start_frame_index);

  base::TimeDelta timestamp = base::Microseconds(
      last_frame_index * base::Time::kMicrosecondsPerSecond / kCommonFps);
  EXPECT_EQ(kExpectedBufferFullness1, GetBufferFullness(timestamp));
  EXPECT_EQ(kExpectedBufferBytes1, hrd_buffer_->GetBytesAtTime(timestamp));
  EXPECT_EQ(kExpectedBufferBytesRemaining1,
            hrd_buffer_->GetBytesRemainingAtTime(timestamp));
  EXPECT_EQ(kExpectedLastFrameBufferBytes1,
            hrd_buffer_->last_frame_buffer_bytes());

  // Increase average bitrate 50%.
  hrd_buffer_->SetParameters(buffer_size, kCommonAvgBitrate * 3 / 2,
                             kCommonPeakBitrate * 3 / 2, false);
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate * 3 / 2, hrd_buffer_->average_bitrate());

  start_frame_index = last_frame_index;
  last_frame_index =
      RunTestSequence(kCommonAvgBitrate, kCommonFps, start_frame_index);

  timestamp = base::Microseconds(
      last_frame_index * base::Time::kMicrosecondsPerSecond / kCommonFps);
  EXPECT_EQ(kExpectedBufferFullness2, GetBufferFullness(timestamp));
  EXPECT_EQ(kExpectedBufferBytes2, hrd_buffer_->GetBytesAtTime(timestamp));
  EXPECT_EQ(kExpectedBufferBytesRemaining2,
            hrd_buffer_->GetBytesRemainingAtTime(timestamp));
  EXPECT_EQ(kExpectedLastFrameBufferBytes2,
            hrd_buffer_->last_frame_buffer_bytes());

  // Decrease average bitrate 33%.
  hrd_buffer_->SetParameters(buffer_size, kCommonAvgBitrate * 2 / 3,
                             kCommonPeakBitrate * 2 / 3, false);
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate * 2 / 3, hrd_buffer_->average_bitrate());

  start_frame_index = last_frame_index;
  last_frame_index =
      RunTestSequence(kCommonAvgBitrate, kCommonFps, start_frame_index);

  timestamp = base::Microseconds(
      last_frame_index * base::Time::kMicrosecondsPerSecond / kCommonFps);
  EXPECT_EQ(kExpectedBufferFullness3, GetBufferFullness(timestamp));
  EXPECT_EQ(kExpectedBufferBytes3, hrd_buffer_->GetBytesAtTime(timestamp));
  EXPECT_EQ(kExpectedBufferBytesRemaining3,
            hrd_buffer_->GetBytesRemainingAtTime(timestamp));
  EXPECT_EQ(kExpectedLastFrameBufferBytes3,
            hrd_buffer_->last_frame_buffer_bytes());
}

// The test uses extended HRD buffer constructor which initiates the buffer
// internal state with the provided parameters. After running the first test
// sequence, a new buffer is created with predefined state and another sequence
// is run after that. A snapshot of the buffer state is checked stirictly
// against predefined values after each sequence run.
TEST_F(HRDBufferTest, CheckSettingBufferState) {
  constexpr int kExpectedBufferFullness1 = 0;
  constexpr int kExpectedBufferBytes1 = 0;
  constexpr int kExpectedBufferBytesRemaining1 = 125000;
  constexpr int kExpectedLastFrameBufferBytes1 = 0;
  constexpr base::TimeDelta kExpectedLastFrameTimestamp1 =
      base::Microseconds(-1);
  constexpr int kExpectedBufferFullness2 = 12;
  constexpr int kExpectedBufferBytes2 = 15875;
  constexpr int kExpectedBufferBytesRemaining2 = 109125;
  constexpr int kExpectedLastFrameBufferBytes2 = 20000;
  constexpr base::TimeDelta kExpectedLastFrameTimestamp2 =
      base::Microseconds(99000);

  size_t buffer_size =
      GetBufferSizeFromDelay(kCommonAvgBitrate, kCommonBufferDelay);

  hrd_buffer_->SetParameters(buffer_size, kCommonAvgBitrate, kCommonPeakBitrate,
                             false);
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate, hrd_buffer_->average_bitrate());

  base::TimeDelta timestamp = base::Microseconds(0);

  EXPECT_EQ(kExpectedBufferFullness1, GetBufferFullness(timestamp));
  EXPECT_EQ(kExpectedBufferBytes1, hrd_buffer_->GetBytesAtTime(timestamp));
  EXPECT_EQ(kExpectedBufferBytesRemaining1,
            hrd_buffer_->GetBytesRemainingAtTime(timestamp));
  EXPECT_EQ(kExpectedLastFrameBufferBytes1,
            hrd_buffer_->last_frame_buffer_bytes());
  EXPECT_EQ(kExpectedLastFrameTimestamp1, hrd_buffer_->last_frame_timestamp());

  constexpr int kLastFrameBufferBytes2 = 20000;
  constexpr base::TimeDelta kCurrFrameTimestamp2 = base::Microseconds(132000);
  constexpr base::TimeDelta kLastFrameTimestamp2 = base::Microseconds(99000);

  hrd_buffer_ =
      std::make_unique<HRDBuffer>(buffer_size, kCommonAvgBitrate,
                                  kLastFrameBufferBytes2, kLastFrameTimestamp2);

  timestamp = kCurrFrameTimestamp2;

  EXPECT_EQ(kExpectedBufferFullness2, GetBufferFullness(timestamp));
  EXPECT_EQ(kExpectedBufferBytes2, hrd_buffer_->GetBytesAtTime(timestamp));
  EXPECT_EQ(kExpectedBufferBytesRemaining2,
            hrd_buffer_->GetBytesRemainingAtTime(timestamp));
  EXPECT_EQ(kExpectedLastFrameBufferBytes2,
            hrd_buffer_->last_frame_buffer_bytes());
  EXPECT_EQ(kExpectedLastFrameTimestamp2, hrd_buffer_->last_frame_timestamp());
}

// Checks the last frame timestamp parameter after a frame is added to the
// buffer.
TEST_F(HRDBufferTest, CheckBufferLastFrameTimestamp) {
  size_t buffer_size =
      GetBufferSizeFromDelay(kCommonAvgBitrate, kCommonBufferDelay);

  hrd_buffer_->SetParameters(buffer_size, kCommonAvgBitrate, kCommonPeakBitrate,
                             false);
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate, hrd_buffer_->average_bitrate());

  base::TimeDelta timestamp = base::Microseconds(100000);

  size_t encoded_size(10000);
  hrd_buffer_->AddFrameBytes(encoded_size, timestamp);

  EXPECT_EQ(timestamp, hrd_buffer_->last_frame_timestamp());
}

// Checks the buffer fullness parameter when the size of the buffer is being
// reduced. The size should follow strictly the predefined buffer size values.
TEST_F(HRDBufferTest, CheckBufferShrinking) {
  constexpr int kFrameSequenceValues[] = {10000, 10000, 10000, 10000, 10000,
                                          10000, 10000, 10000, 10000, 10000};
  constexpr auto kBufferShrinkingValues = std::to_array<size_t>({
      122917,
      120834,
      118751,
      116668,
      114585,
      112502,
      110419,
      108336,
      106253,
      104170,
  });

  const size_t buffer_size =
      GetBufferSizeFromDelay(kCommonAvgBitrate, kCommonBufferDelay);

  hrd_buffer_->SetParameters(buffer_size, kCommonAvgBitrate, kCommonPeakBitrate,
                             false);
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate, hrd_buffer_->average_bitrate());

  base::TimeDelta timestamp = base::Microseconds(0);
  for (size_t encoded_size : kFrameSequenceValues) {
    hrd_buffer_->AddFrameBytes(encoded_size, timestamp);

    timestamp +=
        base::Microseconds(base::Time::kMicrosecondsPerSecond / kCommonFps);
  }

  hrd_buffer_->SetParameters(buffer_size / 2, kCommonAvgBitrate,
                             kCommonPeakBitrate, true);
  // The size of the buffer remains the same, since it will be reduced
  // gradually.
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate, hrd_buffer_->average_bitrate());

  int frame_index = 0;
  for (size_t encoded_size : kFrameSequenceValues) {
    hrd_buffer_->Shrink(timestamp);

    hrd_buffer_->AddFrameBytes(encoded_size, timestamp);

    EXPECT_EQ(kBufferShrinkingValues[frame_index], hrd_buffer_->buffer_size());

    ++frame_index;
    timestamp +=
        base::Microseconds(base::Time::kMicrosecondsPerSecond / kCommonFps);
  }

  hrd_buffer_->SetParameters(buffer_size / 3, kCommonAvgBitrate,
                             static_cast<uint32_t>(kCommonAvgBitrate * 1.2f),
                             true);
  // The size of the buffer changes immeditely since the peak bitrate is less
  // than 1.5 of the average bitrate.
  EXPECT_EQ(buffer_size / 3, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate, hrd_buffer_->average_bitrate());
}

// Checks the buffer overshoot condition. After running the test frame sequence
// the buffer should overshoot at the predefined frame index.
TEST_F(HRDBufferTest, CheckBufferOvershoot) {
  constexpr int kFrameSequenceValues[] = {30000, 10000, 10000, 10000, 10000,
                                          10000, 10000, 10000, 10000, 10000};
  constexpr int kExpectedFrameOvershootingIndex = 6;

  const size_t buffer_size =
      GetBufferSizeFromDelay(kCommonAvgBitrate, kCommonBufferDelay / 2);

  hrd_buffer_->SetParameters(buffer_size, kCommonAvgBitrate, kCommonPeakBitrate,
                             false);
  EXPECT_EQ(buffer_size, hrd_buffer_->buffer_size());
  EXPECT_EQ(kCommonAvgBitrate, hrd_buffer_->average_bitrate());

  base::TimeDelta timestamp = base::Microseconds(0);
  int frame_index = 0;
  for (size_t encoded_size : kFrameSequenceValues) {
    hrd_buffer_->AddFrameBytes(encoded_size, timestamp);

    if (!hrd_buffer_->frame_overshooting()) {
      EXPECT_GT(kExpectedFrameOvershootingIndex, frame_index);
    } else {
      EXPECT_LE(kExpectedFrameOvershootingIndex, frame_index);
    }

    ++frame_index;
    timestamp +=
        base::Microseconds(base::Time::kMicrosecondsPerSecond / kCommonFps);
  }
}

}  // namespace
}  // namespace media