1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
media / gpu / svc_layers_unittest.cc [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/svc_layers.h"
#include <algorithm>
#include <array>
#include <map>
#include <optional>
#include <vector>
#include "base/containers/contains.h"
#include "base/logging.h"
#include "media/gpu/vp9_picture.h"
#include "media/gpu/vp9_reference_frame_vector.h"
#include "media/parsers/vp9_parser.h"
#include "media/video/video_encode_accelerator.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/libgav1/src/src/utils/types.h"
namespace media {
namespace {
constexpr gfx::Size kDefaultEncodeSize(1280, 720);
constexpr auto kSpatialLayerResolutionDenom = std::to_array<int>({4, 2, 1});
gfx::Size GetDefaultSVCResolution(size_t spatial_index) {
const int denom = kSpatialLayerResolutionDenom[spatial_index];
return gfx::Size(kDefaultEncodeSize.width() / denom,
kDefaultEncodeSize.height() / denom);
}
std::vector<gfx::Size> GetDefaultSVCResolutions(size_t num_spatial_layers) {
std::vector<gfx::Size> spatial_layer_resolutions(num_spatial_layers);
for (size_t i = 0; i < num_spatial_layers; ++i) {
spatial_layer_resolutions[i] = GetDefaultSVCResolution(i);
}
return spatial_layer_resolutions;
}
SVCLayers::Config GetDefaultSVCLayersToConfig(
size_t num_spatial_layers,
size_t num_temporal_layers,
SVCInterLayerPredMode inter_layer_pred) {
const auto& spatial_layer_resolutions =
GetDefaultSVCResolutions(num_spatial_layers);
return SVCLayers::Config(spatial_layer_resolutions,
/*begin_active_layer=*/0,
spatial_layer_resolutions.size(),
num_temporal_layers, inter_layer_pred);
}
uint8_t GetTemporalIndex(size_t num_temporal_layers, size_t frame_num) {
constexpr auto kTemporalIndices = std::to_array<std::array<uint8_t, 4>>({
{0, 0, 0, 0},
{0, 1, 0, 1},
{0, 2, 1, 2},
});
CHECK(1 <= num_temporal_layers && num_temporal_layers <= 3);
return kTemporalIndices[num_temporal_layers - 1][frame_num % 4];
}
struct Vp9MetadataAndFrameNum {
constexpr static size_t kInvalidFrameNum = std::numeric_limits<size_t>::max();
Vp9MetadataAndFrameNum() : frame_num(kInvalidFrameNum) {}
Vp9MetadataAndFrameNum(size_t frame_num, const Vp9Metadata& metadata)
: frame_num(frame_num), metadata(metadata) {}
bool is_valid() const { return frame_num != kInvalidFrameNum; }
size_t frame_num = 0;
Vp9Metadata metadata;
};
void VerifyVp9ReferenceFrame(const Vp9Metadata& metadata,
size_t frame_num,
const Vp9MetadataAndFrameNum& ref_frame,
SVCInterLayerPredMode inter_layer_pred) {
ASSERT_TRUE(ref_frame.is_valid());
const Vp9Metadata& ref_metadata = ref_frame.metadata;
const uint8_t ref_spatial_index = ref_metadata.spatial_idx;
// In key picture, upper spatial layers must refer the lower spatial layer.
// Or referenced frames must be in the same spatial layer.
if (frame_num == 0 && inter_layer_pred == SVCInterLayerPredMode::kOnKeyPic) {
EXPECT_EQ(ref_spatial_index, metadata.spatial_idx - 1);
EXPECT_TRUE(metadata.p_diffs.empty());
} else {
EXPECT_EQ(ref_spatial_index, metadata.spatial_idx);
const std::vector<uint8_t> expected_p_diffs = {
base::checked_cast<uint8_t>(frame_num - ref_frame.frame_num)};
EXPECT_EQ(metadata.p_diffs, expected_p_diffs);
}
const size_t ref_temporal_index = ref_metadata.temporal_idx;
EXPECT_LE(ref_temporal_index, metadata.temporal_idx);
EXPECT_EQ(metadata.temporal_up_switch, ref_metadata.temporal_idx == 0);
}
void VerifyVp9kSVCFrame(
const SVCLayers::PictureParam& picture_param,
const Vp9Metadata& metadata,
const std::array<Vp9MetadataAndFrameNum, kVp9NumRefFrames>& ref_frames,
size_t frame_num,
size_t num_spatial_layers,
size_t expected_begin_active_layer,
size_t expected_end_active_layer) {
const uint8_t temporal_index = metadata.temporal_idx;
const uint8_t spatial_index = metadata.spatial_idx;
EXPECT_EQ(picture_param.key_frame, frame_num == 0 && spatial_index == 0);
EXPECT_EQ(metadata.end_of_picture, spatial_index == num_spatial_layers - 1);
if (picture_param.key_frame) {
EXPECT_EQ(spatial_index, 0);
EXPECT_EQ(temporal_index, 0);
EXPECT_FALSE(metadata.inter_pic_predicted);
EXPECT_TRUE(metadata.temporal_up_switch);
EXPECT_EQ(metadata.referenced_by_upper_spatial_layers,
num_spatial_layers > 1);
EXPECT_FALSE(metadata.reference_lower_spatial_layers);
EXPECT_EQ(metadata.spatial_layer_resolutions,
GetDefaultSVCResolutions(num_spatial_layers));
EXPECT_EQ(metadata.begin_active_spatial_layer_index,
expected_begin_active_layer);
EXPECT_EQ(metadata.end_active_spatial_layer_index,
expected_end_active_layer);
EXPECT_TRUE(metadata.p_diffs.empty());
EXPECT_EQ(picture_param.frame_size, GetDefaultSVCResolution(spatial_index));
EXPECT_EQ(picture_param.refresh_frame_flags, 0xff);
EXPECT_TRUE(picture_param.reference_frame_indices.empty());
return;
}
EXPECT_EQ(picture_param.frame_size, GetDefaultSVCResolution(spatial_index));
// Six slots at most in the reference pool are used in spatial/temporal layer
// encoding. Additionally, non-keyframe must reference some frames.
// |ref_frames_used| must be {true, false, false} because here is,
// 1. if the frame is in key picture, it references one lower spatial layer,
// 2. otherwise the frame doesn't reference other spatial layers and thus
// references only one frame in the same spatial layer based on the current
// reference pattern.
EXPECT_EQ(picture_param.refresh_frame_flags & ~(0b111111u), 0u);
ASSERT_EQ(picture_param.reference_frame_indices.size(), 1u);
EXPECT_EQ(metadata.inter_pic_predicted, !metadata.p_diffs.empty());
EXPECT_EQ(metadata.inter_pic_predicted, frame_num != 0);
if (frame_num == 0) {
EXPECT_TRUE(metadata.reference_lower_spatial_layers);
EXPECT_EQ(metadata.referenced_by_upper_spatial_layers,
spatial_index + 1 != num_spatial_layers);
} else {
EXPECT_FALSE(metadata.referenced_by_upper_spatial_layers);
EXPECT_FALSE(metadata.reference_lower_spatial_layers);
}
EXPECT_TRUE(metadata.spatial_layer_resolutions.empty());
// Check that the current frame doesn't reference upper layer frames.
VerifyVp9ReferenceFrame(metadata, frame_num,
ref_frames[picture_param.reference_frame_indices[0]],
SVCInterLayerPredMode::kOnKeyPic);
}
void VerifyVp9SmodeFrame(
const SVCLayers::PictureParam& picture_param,
const Vp9Metadata& metadata,
const std::array<Vp9MetadataAndFrameNum, kVp9NumRefFrames>& ref_frames,
size_t frame_num,
size_t num_spatial_layers,
size_t expected_begin_active_layer,
size_t expected_end_active_layer) {
const uint8_t temporal_index = metadata.temporal_idx;
const uint8_t spatial_index = metadata.spatial_idx;
EXPECT_EQ(picture_param.key_frame, frame_num == 0);
EXPECT_EQ(metadata.end_of_picture, spatial_index == num_spatial_layers - 1);
if (picture_param.key_frame) {
EXPECT_EQ(temporal_index, 0u);
EXPECT_FALSE(metadata.inter_pic_predicted);
EXPECT_TRUE(metadata.temporal_up_switch);
EXPECT_FALSE(metadata.referenced_by_upper_spatial_layers);
EXPECT_FALSE(metadata.reference_lower_spatial_layers);
EXPECT_EQ(metadata.spatial_layer_resolutions,
GetDefaultSVCResolutions(num_spatial_layers));
EXPECT_EQ(metadata.begin_active_spatial_layer_index,
expected_begin_active_layer);
EXPECT_EQ(metadata.end_active_spatial_layer_index,
expected_end_active_layer);
EXPECT_TRUE(metadata.p_diffs.empty());
EXPECT_EQ(picture_param.frame_size, GetDefaultSVCResolution(spatial_index));
if (spatial_index == 0) {
EXPECT_EQ(picture_param.refresh_frame_flags, 0xff);
} else {
EXPECT_EQ(picture_param.refresh_frame_flags,
(0x1 << (spatial_index * 2)));
}
EXPECT_TRUE(picture_param.reference_frame_indices.empty());
return;
}
EXPECT_EQ(picture_param.frame_size, GetDefaultSVCResolution(spatial_index));
EXPECT_EQ(picture_param.refresh_frame_flags & ~(0b111111u), 0u);
EXPECT_EQ(picture_param.reference_frame_indices.size(), 1u);
EXPECT_TRUE(metadata.inter_pic_predicted);
EXPECT_FALSE(metadata.referenced_by_upper_spatial_layers);
EXPECT_FALSE(metadata.reference_lower_spatial_layers);
EXPECT_TRUE(metadata.spatial_layer_resolutions.empty());
// Check that the current frame doesn't reference upper layer frames.
VerifyVp9ReferenceFrame(metadata, frame_num,
ref_frames[picture_param.reference_frame_indices[0]],
SVCInterLayerPredMode::kOff);
}
struct SVCGenericMetadataAndFrameNum {
constexpr static size_t kInvalidFrameNum = std::numeric_limits<size_t>::max();
SVCGenericMetadataAndFrameNum() : frame_num(kInvalidFrameNum) {}
SVCGenericMetadataAndFrameNum(size_t frame_num,
const SVCGenericMetadata& metadata)
: frame_num(frame_num), metadata(metadata) {}
bool is_valid() const { return frame_num != kInvalidFrameNum; }
size_t frame_num = 0;
SVCGenericMetadata metadata;
};
// Supports kSVC and Smode SVC frame verification.
void VerifyAv1SVCFrame(
const SVCLayers::PictureParam& picture_param,
const SVCGenericMetadata& metadata,
const std::array<SVCGenericMetadataAndFrameNum,
libgav1::kNumReferenceFrameTypes>& ref_frames,
size_t frame_num,
SVCInterLayerPredMode inter_layer_pred) {
const uint8_t temporal_index = metadata.temporal_idx;
const uint8_t spatial_index = metadata.spatial_idx;
bool s_mode = inter_layer_pred == SVCInterLayerPredMode::kOff;
if (s_mode) {
EXPECT_EQ(picture_param.key_frame, frame_num == 0);
} else {
EXPECT_EQ(picture_param.key_frame, frame_num == 0 && spatial_index == 0);
}
if (picture_param.key_frame) {
EXPECT_EQ(temporal_index, 0);
EXPECT_EQ(picture_param.frame_size, GetDefaultSVCResolution(spatial_index));
EXPECT_TRUE(picture_param.reference_frame_indices.empty());
if (s_mode && spatial_index != 0) {
EXPECT_EQ(picture_param.refresh_frame_flags,
(0x1 << (spatial_index * 2)));
} else {
EXPECT_EQ(picture_param.refresh_frame_flags, 0xff);
}
return;
}
EXPECT_EQ(picture_param.frame_size, GetDefaultSVCResolution(spatial_index));
EXPECT_EQ(picture_param.refresh_frame_flags & ~(0b111111u), 0u);
ASSERT_EQ(picture_param.reference_frame_indices.size(), 1u);
// Verify Av1 reference frame.
const SVCGenericMetadataAndFrameNum& ref_frame =
ref_frames[picture_param.reference_frame_indices[0]];
ASSERT_TRUE(ref_frame.is_valid());
const SVCGenericMetadata& ref_metadata = ref_frame.metadata;
const uint8_t ref_spatial_index = ref_metadata.spatial_idx;
// In key picture, upper spatial layers must refer the lower spatial layer.
// Or referenced frames must be in the same spatial layer.
if (!s_mode && frame_num == 0) {
EXPECT_EQ(ref_spatial_index, metadata.spatial_idx - 1);
} else {
EXPECT_EQ(ref_spatial_index, metadata.spatial_idx);
}
const size_t ref_temporal_index = ref_metadata.temporal_idx;
EXPECT_LE(ref_temporal_index, metadata.temporal_idx);
}
} // namespace
class SVCLayersTest
: public ::testing::TestWithParam<
::testing::tuple<size_t, size_t, SVCInterLayerPredMode>> {};
TEST_P(SVCLayersTest, VerifyVp9Metadata) {
const size_t num_spatial_layers = ::testing::get<0>(GetParam());
const size_t num_temporal_layers = ::testing::get<1>(GetParam());
const SVCInterLayerPredMode inter_layer_pred_mode =
::testing::get<2>(GetParam());
const SVCLayers::Config config = GetDefaultSVCLayersToConfig(
num_spatial_layers, num_temporal_layers, inter_layer_pred_mode);
SVCLayers svc_layers(config);
constexpr size_t kNumFramesToEncode = 100;
std::array<Vp9MetadataAndFrameNum, kVp9NumRefFrames> ref_frames;
constexpr size_t kKeyFrameInterval = 17;
for (size_t i = 0; i < kNumFramesToEncode; ++i) {
bool key_svc_frame = i % kKeyFrameInterval == 0;
if (key_svc_frame) {
svc_layers.Reset();
}
for (size_t sid = 0; sid < num_spatial_layers; ++sid) {
bool key_frame = false;
size_t frame_num = svc_layers.frame_num();
if (frame_num == 0) {
if (inter_layer_pred_mode == SVCInterLayerPredMode::kOnKeyPic) {
key_frame = sid == 0;
} else {
key_frame = true;
}
}
EXPECT_EQ(svc_layers.IsKeyFrame(), key_frame);
SVCLayers::PictureParam picture_param;
Vp9Metadata metadata;
svc_layers.GetPictureParamAndMetadata(picture_param, &metadata);
EXPECT_EQ(svc_layers.spatial_idx(), metadata.spatial_idx);
EXPECT_EQ(svc_layers.spatial_idx(), sid);
EXPECT_EQ(GetTemporalIndex(num_temporal_layers, frame_num),
metadata.temporal_idx);
if (inter_layer_pred_mode == SVCInterLayerPredMode::kOnKeyPic) {
VerifyVp9kSVCFrame(picture_param, metadata, ref_frames, frame_num,
config.active_spatial_layer_resolutions.size(),
config.begin_active_layer, config.end_active_layer);
} else {
VerifyVp9SmodeFrame(picture_param, metadata, ref_frames, frame_num,
config.active_spatial_layer_resolutions.size(),
config.begin_active_layer, config.end_active_layer);
}
for (size_t j = 0; j < kVp9NumRefFrames; ++j) {
if (picture_param.refresh_frame_flags & (1 << j)) {
ref_frames[j] = Vp9MetadataAndFrameNum{frame_num, metadata};
}
}
svc_layers.PostEncode(picture_param.refresh_frame_flags);
}
}
}
TEST_P(SVCLayersTest, VerifyVp9MetadataMultipleTimes) {
const size_t num_spatial_layers = ::testing::get<0>(GetParam());
const size_t num_temporal_layers = ::testing::get<1>(GetParam());
const SVCInterLayerPredMode inter_layer_pred_mode =
::testing::get<2>(GetParam());
const SVCLayers::Config config = GetDefaultSVCLayersToConfig(
num_spatial_layers, num_temporal_layers, inter_layer_pred_mode);
SVCLayers svc_layers(config);
constexpr size_t kNumFramesToEncode = 100;
std::array<Vp9MetadataAndFrameNum, kVp9NumRefFrames> ref_frames;
constexpr size_t kKeyFrameInterval = 17;
constexpr size_t kReacquireInterval = 23;
size_t frame_count = 0;
for (size_t i = 0; i < kNumFramesToEncode; ++i) {
bool key_svc_frame = i % kKeyFrameInterval == 0;
if (key_svc_frame) {
svc_layers.Reset();
}
for (size_t sid = 0; sid < num_spatial_layers; ++sid) {
const bool reacquire = frame_count % kReacquireInterval;
frame_count++;
const size_t call_get_times = 1 + reacquire;
for (size_t j = 0; j < call_get_times; j++) {
bool key_frame = false;
size_t frame_num = svc_layers.frame_num();
if (frame_num == 0) {
if (inter_layer_pred_mode == SVCInterLayerPredMode::kOnKeyPic) {
key_frame = sid == 0;
} else {
key_frame = true;
}
}
EXPECT_EQ(svc_layers.IsKeyFrame(), key_frame);
SVCLayers::PictureParam picture_param;
Vp9Metadata metadata;
svc_layers.GetPictureParamAndMetadata(picture_param, &metadata);
EXPECT_EQ(svc_layers.spatial_idx(), metadata.spatial_idx);
EXPECT_EQ(svc_layers.spatial_idx(), sid);
EXPECT_EQ(GetTemporalIndex(num_temporal_layers, frame_num),
metadata.temporal_idx);
if (inter_layer_pred_mode == SVCInterLayerPredMode::kOnKeyPic) {
VerifyVp9kSVCFrame(picture_param, metadata, ref_frames, frame_num,
config.active_spatial_layer_resolutions.size(),
config.begin_active_layer,
config.end_active_layer);
} else {
VerifyVp9SmodeFrame(picture_param, metadata, ref_frames, frame_num,
config.active_spatial_layer_resolutions.size(),
config.begin_active_layer,
config.end_active_layer);
}
if (j == call_get_times - 1) {
for (size_t k = 0; k < kVp9NumRefFrames; ++k) {
if (picture_param.refresh_frame_flags & (1 << k)) {
ref_frames[k] = Vp9MetadataAndFrameNum{frame_num, metadata};
}
}
svc_layers.PostEncode(picture_param.refresh_frame_flags);
}
}
}
}
}
TEST_P(SVCLayersTest, VerifyAv1SVCGenericMetadata) {
const size_t num_spatial_layers = ::testing::get<0>(GetParam());
const size_t num_temporal_layers = ::testing::get<1>(GetParam());
const SVCInterLayerPredMode inter_layer_pred_mode =
::testing::get<2>(GetParam());
const SVCLayers::Config config = GetDefaultSVCLayersToConfig(
num_spatial_layers, num_temporal_layers, inter_layer_pred_mode);
SVCLayers svc_layers(config);
constexpr size_t kNumFramesToEncode = 100;
std::array<SVCGenericMetadataAndFrameNum, libgav1::kNumReferenceFrameTypes>
ref_frames;
constexpr size_t kKeyFrameInterval = 17;
for (size_t i = 0; i < kNumFramesToEncode; ++i) {
bool key_svc_frame = i % kKeyFrameInterval == 0;
if (key_svc_frame) {
svc_layers.Reset();
}
for (size_t sid = 0; sid < num_spatial_layers; ++sid) {
bool key_frame = false;
size_t frame_num = svc_layers.frame_num();
if (frame_num == 0) {
if (inter_layer_pred_mode == SVCInterLayerPredMode::kOnKeyPic) {
key_frame = sid == 0;
} else {
key_frame = true;
}
}
EXPECT_EQ(svc_layers.IsKeyFrame(), key_frame);
SVCLayers::PictureParam picture_param;
SVCGenericMetadata metadata;
svc_layers.GetPictureParamAndMetadata(picture_param, &metadata);
EXPECT_EQ(svc_layers.spatial_idx(), metadata.spatial_idx);
EXPECT_EQ(svc_layers.spatial_idx(), sid);
EXPECT_EQ(GetTemporalIndex(num_temporal_layers, frame_num),
metadata.temporal_idx);
VerifyAv1SVCFrame(picture_param, metadata, ref_frames, frame_num,
inter_layer_pred_mode);
for (size_t j = 0; j < libgav1::kNumReferenceFrameTypes; ++j) {
if (picture_param.refresh_frame_flags & (1 << j)) {
ref_frames[j] = SVCGenericMetadataAndFrameNum{frame_num, metadata};
}
}
svc_layers.PostEncode(picture_param.refresh_frame_flags);
}
}
}
// std::make_tuple(num_spatial_layers, num_temporal_layers,
// inter_layer_pred_mode)
INSTANTIATE_TEST_SUITE_P(
,
SVCLayersTest,
::testing::Values(std::make_tuple(1, 2, SVCInterLayerPredMode::kOff),
std::make_tuple(1, 3, SVCInterLayerPredMode::kOff),
std::make_tuple(1, 2, SVCInterLayerPredMode::kOn),
std::make_tuple(1, 3, SVCInterLayerPredMode::kOn),
std::make_tuple(1, 2, SVCInterLayerPredMode::kOnKeyPic),
std::make_tuple(1, 3, SVCInterLayerPredMode::kOnKeyPic),
std::make_tuple(2, 1, SVCInterLayerPredMode::kOnKeyPic),
std::make_tuple(2, 2, SVCInterLayerPredMode::kOnKeyPic),
std::make_tuple(2, 3, SVCInterLayerPredMode::kOnKeyPic),
std::make_tuple(3, 1, SVCInterLayerPredMode::kOnKeyPic),
std::make_tuple(3, 2, SVCInterLayerPredMode::kOnKeyPic),
std::make_tuple(3, 3, SVCInterLayerPredMode::kOnKeyPic),
std::make_tuple(2, 1, SVCInterLayerPredMode::kOff),
std::make_tuple(2, 2, SVCInterLayerPredMode::kOff),
std::make_tuple(2, 3, SVCInterLayerPredMode::kOff),
std::make_tuple(3, 1, SVCInterLayerPredMode::kOff),
std::make_tuple(3, 2, SVCInterLayerPredMode::kOff),
std::make_tuple(3, 3, SVCInterLayerPredMode::kOff)));
} // namespace media