1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390

media / gpu / test / image_quality_metrics.cc [blame]

// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include <math.h>
#include <algorithm>
#include <utility>

#include "base/logging.h"
#include "media/base/video_frame.h"
#include "media/base/video_types.h"
#include "media/gpu/test/video_frame_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/libyuv/include/libyuv/compare.h"
#include "ui/gfx/geometry/point.h"

#define ASSERT_TRUE_OR_RETURN(predicate, return_value) \
  do {                                                 \
    if (!(predicate)) {                                \
      ADD_FAILURE();                                   \
      return (return_value);                           \
    }                                                  \
  } while (0)

namespace media {
namespace test {
namespace {
// The metrics of the similarity of two images.
enum SimilarityMetrics {
  PSNR,  // Peak Signal-to-Noise Ratio. For detail see
         // https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
  SSIM,  // Structural Similarity. For detail see
         // https://en.wikipedia.org/wiki/Structural_similarity
};

// Computes the SSIM of a window of 8x8 samples between two planes where each
// sample is 16 bits. This is modeled after libyuv::Ssim8x8_C().
double SSIM16BitPlane8x8(const uint8_t* src_a,
                         int stride_a,
                         const uint8_t* src_b,
                         int stride_b) {
  int64_t sum_a = 0;
  int64_t sum_b = 0;
  int64_t sum_sq_a = 0;
  int64_t sum_sq_b = 0;
  int64_t sum_axb = 0;
  for (int i = 0; i < 8; ++i) {
    for (int j = 0; j < 8; ++j) {
      // Read 16 bits and store it in a 32 bits value to avoid overflow in the
      // following calculations.
      const uint32_t a = static_cast<uint32_t>(
          *reinterpret_cast<const uint16_t*>(src_a + 2 * j));
      const uint32_t b = static_cast<uint32_t>(
          *reinterpret_cast<const uint16_t*>(src_b + 2 * j));
      sum_a += a;
      sum_b += b;
      sum_sq_a += a * a;
      sum_sq_b += b * b;
      sum_axb += a * b;
    }

    src_a += stride_a;
    src_b += stride_b;
  }

  constexpr int64_t count = 64;
  constexpr int64_t cc1 = 1759164917;   // (64^2*(.01*65535)^2
  constexpr int64_t cc2 = 15832484259;  // (64^2*(.03*65535)^2
  constexpr int64_t c1 = (cc1 * count * count) >> 12;
  constexpr int64_t c2 = (cc2 * count * count) >> 12;
  const int64_t sum_a_x_sum_b = sum_a * sum_b;
  const int64_t ssim_n =
      (2 * sum_a_x_sum_b + c1) * (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2);
  const int64_t sum_a_sq = sum_a * sum_a;
  const int64_t sum_b_sq = sum_b * sum_b;
  const int64_t ssim_d =
      (sum_a_sq + sum_b_sq + c1) *
      (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2);

  if (ssim_d == 0)
    return std::numeric_limits<double>::max();
  return ssim_n * 1.0 / ssim_d;
}

// Computes the SSIM between two planes where each sample is 16 bits. This is
// modeled after libyuv::CalcFrameSsim().
double Calc16bitPlaneSSIM(const uint8_t* src_a,
                          int stride_a,
                          const uint8_t* src_b,
                          int stride_b,
                          int width,
                          int height) {
  int samples = 0;
  double ssim_total = 0;
  for (int i = 0; i < height - 8; i += 4) {
    for (int j = 0; j < width - 8; j += 4) {
      // Double |j| because the color depth is 16 bits.
      ssim_total +=
          SSIM16BitPlane8x8(src_a + 2 * j, stride_a, src_b + 2 * j, stride_b);
      samples++;
    }
    // |stride_a| and |stride_b| are bytes. No need to double them.
    src_a += stride_a * 4;
    src_b += stride_b * 4;
  }

  ssim_total /= samples;
  return ssim_total;
}

// Computes the SSIM between two YUV420P010 buffers. This is modeled after
// libyuv::I420Ssim().
double ComputeYUV420P10SSIM(const uint8_t* src_y_a,
                            int stride_y_a,
                            const uint8_t* src_u_a,
                            int stride_u_a,
                            const uint8_t* src_v_a,
                            int stride_v_a,
                            const uint8_t* src_y_b,
                            int stride_y_b,
                            const uint8_t* src_u_b,
                            int stride_u_b,
                            const uint8_t* src_v_b,
                            int stride_v_b,
                            int width,
                            int height) {
  const double ssim_y = Calc16bitPlaneSSIM(src_y_a, stride_y_a, src_y_b,
                                           stride_y_b, width, height);
  const int width_uv = (width + 1) >> 1;
  const int height_uv = (height + 1) >> 1;
  const double ssim_u = Calc16bitPlaneSSIM(src_u_a, stride_u_a, src_u_b,
                                           stride_u_b, width_uv, height_uv);
  const double ssim_v = Calc16bitPlaneSSIM(src_v_a, stride_v_a, src_v_b,
                                           stride_v_b, width_uv, height_uv);
  return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v);
}

double ComputeSimilarity(const VideoFrame* frame1,
                         const VideoFrame* frame2,
                         SimilarityMetrics mode) {
  ASSERT_TRUE_OR_RETURN(
      frame1->IsMappable() && frame2->IsMappable(),
      static_cast<double>(std::numeric_limits<std::size_t>::max()));
  ASSERT_TRUE_OR_RETURN(
      frame1->visible_rect().size() == frame2->visible_rect().size(),
      static_cast<double>(std::numeric_limits<std::size_t>::max()));
  ASSERT_TRUE_OR_RETURN(
      frame1->BitDepth() == frame2->BitDepth(),
      static_cast<double>(std::numeric_limits<std::size_t>::max()));
  const size_t bit_depth = std::min(frame1->BitDepth(), frame2->BitDepth());
  const VideoPixelFormat common_format =
      bit_depth == 8 ? PIXEL_FORMAT_I420 : PIXEL_FORMAT_YUV420P10;

  // These are used, only if frames are converted to |common_format|, for
  // keeping converted frames alive until the end of function.
  scoped_refptr<VideoFrame> converted_frame1;
  scoped_refptr<VideoFrame> converted_frame2;

  if (frame1->format() != common_format) {
    converted_frame1 = ConvertVideoFrame(frame1, common_format);
    frame1 = converted_frame1.get();
  }

  if (frame2->format() != common_format) {
    converted_frame2 = ConvertVideoFrame(frame2, common_format);
    frame2 = converted_frame2.get();
  }

  decltype(&libyuv::I420Psnr) metric_func = nullptr;
  switch (mode) {
    case SimilarityMetrics::PSNR:
      if (bit_depth == 8)
        metric_func = &libyuv::I420Psnr;
      break;
    case SimilarityMetrics::SSIM:
      if (bit_depth == 8)
        metric_func = &libyuv::I420Ssim;
      else if (bit_depth == 10)
        metric_func = &ComputeYUV420P10SSIM;
      break;
  }
  ASSERT_TRUE_OR_RETURN(metric_func, std::numeric_limits<double>::max());

  return metric_func(
      frame1->visible_data(0), frame1->stride(0), frame1->visible_data(1),
      frame1->stride(1), frame1->visible_data(2), frame1->stride(2),
      frame2->visible_data(0), frame2->stride(0), frame2->visible_data(1),
      frame2->stride(1), frame2->visible_data(2), frame2->stride(2),
      frame1->visible_rect().width(), frame1->visible_rect().height());
}

constexpr int kJointDistributionBitDepth = 4;
constexpr int kJointDistributionDim = 1 << kJointDistributionBitDepth;

using DistributionTable =
    double[kJointDistributionDim][kJointDistributionDim][kJointDistributionDim];

bool ComputeLogJointDistribution(const VideoFrame& frame,
                                 DistributionTable& log_joint_distribution) {
  ASSERT_TRUE_OR_RETURN(frame.IsMappable(), false);
  ASSERT_TRUE_OR_RETURN(frame.format() == PIXEL_FORMAT_ARGB, false);
  ASSERT_TRUE_OR_RETURN(frame.BitDepth() == 8, false);

  // Arbitrarily small number to fill the probability distribution table with so
  // we don't have a problem with taking the log of 0.
  static const double kMinProbabilityValue = 0.000000001;

  double normalization_factor = kJointDistributionDim * kJointDistributionDim *
                                    kJointDistributionDim *
                                    kMinProbabilityValue +
                                (double)frame.visible_rect().size().GetArea();

  // Initialize distribution table to arbitrarily small probability value.
  for (int i = 0; i < kJointDistributionDim; i++) {
    for (int j = 0; j < kJointDistributionDim; j++) {
      for (int k = 0; k < kJointDistributionDim; k++) {
        log_joint_distribution[i][j][k] = kMinProbabilityValue;
      }
    }
  }

  // Downsample the RGB values of the plane into 4-bits per channel, and use the
  // downsampled color information to increment the corresponding element of the
  // distribution table.
  const uint8_t* row_ptr = frame.visible_data(0);
  for (int y = 0; y < frame.visible_rect().height(); y++) {
    for (int x = 0; x < frame.visible_rect().width(); x++) {
      log_joint_distribution[row_ptr[4 * x + 1] >> kJointDistributionBitDepth]
                            [row_ptr[4 * x + 2] >> kJointDistributionBitDepth]
                            [row_ptr[4 * x + 3] >>
                             kJointDistributionBitDepth] += 1.0;
    }
    row_ptr += frame.stride(0);
  }

  // Normalize the joint distribution so that it sums to 1.0 and then take the
  // log.
  for (int i = 0; i < kJointDistributionDim; i++) {
    for (int j = 0; j < kJointDistributionDim; j++) {
      for (int k = 0; k < kJointDistributionDim; k++) {
        log_joint_distribution[i][j][k] /= normalization_factor;
        log_joint_distribution[i][j][k] = log(log_joint_distribution[i][j][k]);
      }
    }
  }

  return true;
}

double ComputeLogProbability(const VideoFrame& frame,
                             DistributionTable& log_joint_distribution) {
  ASSERT_TRUE_OR_RETURN(frame.IsMappable(), 0.0);
  ASSERT_TRUE_OR_RETURN(frame.format() == PIXEL_FORMAT_ARGB, 0.0);
  ASSERT_TRUE_OR_RETURN(frame.BitDepth() == 8, 0.0);

  double ret = 0.0;

  const uint8_t* row_ptr = frame.visible_data(0);
  for (int y = 0; y < frame.visible_rect().height(); y++) {
    for (int x = 0; x < frame.visible_rect().width(); x++) {
      ret += log_joint_distribution
          [row_ptr[4 * x + 1] >> kJointDistributionBitDepth]
          [row_ptr[4 * x + 2] >> kJointDistributionBitDepth]
          [row_ptr[4 * x + 3] >> kJointDistributionBitDepth];
    }
    row_ptr += frame.stride(0);
  }

  return ret;
}

constexpr double kMaxPsnr = 128.0;

}  // namespace

size_t CompareFramesWithErrorDiff(const VideoFrame& frame1,
                                  const VideoFrame& frame2,
                                  uint8_t tolerance) {
  ASSERT_TRUE_OR_RETURN(frame1.IsMappable() && frame2.IsMappable(),
                        std::numeric_limits<std::size_t>::max());
  ASSERT_TRUE_OR_RETURN(frame1.format() == frame2.format(),
                        std::numeric_limits<std::size_t>::max());
  ASSERT_TRUE_OR_RETURN(
      frame1.visible_rect().size() == frame2.visible_rect().size(),
      std::numeric_limits<std::size_t>::max());
  size_t diff_cnt = 0;

  const VideoPixelFormat format = frame1.format();
  const size_t num_planes = VideoFrame::NumPlanes(format);
  const gfx::Size& visible_size = frame1.visible_rect().size();
  for (size_t i = 0; i < num_planes; ++i) {
    const uint8_t* data1 = frame1.visible_data(i);
    const int stride1 = frame1.stride(i);
    const uint8_t* data2 = frame2.visible_data(i);
    const int stride2 = frame2.stride(i);
    const size_t rows = VideoFrame::Rows(i, format, visible_size.height());
    const int row_bytes = VideoFrame::RowBytes(i, format, visible_size.width());
    for (size_t r = 0; r < rows; ++r) {
      for (int c = 0; c < row_bytes; c++) {
        uint8_t b1 = data1[(stride1 * r) + c];
        uint8_t b2 = data2[(stride2 * r) + c];
        uint8_t diff = std::max(b1, b2) - std::min(b1, b2);
        diff_cnt += diff > tolerance;
      }
    }
  }
  return diff_cnt;
}

double ComputePSNR(const VideoFrame& frame1, const VideoFrame& frame2) {
  return ComputeSimilarity(&frame1, &frame2, SimilarityMetrics::PSNR);
}

double ComputeSSIM(const VideoFrame& frame1, const VideoFrame& frame2) {
  return ComputeSimilarity(&frame1, &frame2, SimilarityMetrics::SSIM);
}

double ComputeLogLikelihoodRatio(scoped_refptr<const VideoFrame> golden_frame,
                                 scoped_refptr<const VideoFrame> test_frame) {
  ASSERT_TRUE_OR_RETURN(
      golden_frame->visible_rect().size() == test_frame->visible_rect().size(),
      0.0);

  if (golden_frame->format() != PIXEL_FORMAT_ARGB) {
    golden_frame = ConvertVideoFrame(golden_frame.get(), PIXEL_FORMAT_ARGB);
  }

  if (test_frame->format() != PIXEL_FORMAT_ARGB) {
    test_frame = ConvertVideoFrame(test_frame.get(), PIXEL_FORMAT_ARGB);
  }

  DistributionTable log_joint_distribution;
  double golden_log_prob = 0.0;
  ASSERT_TRUE_OR_RETURN(
      ComputeLogJointDistribution(*golden_frame, log_joint_distribution), 0.0);
  golden_log_prob =
      ComputeLogProbability(*golden_frame, log_joint_distribution);
  ASSERT_TRUE_OR_RETURN(golden_log_prob != 0.0, 0.0);

  double test_log_prob = 0.0;
  test_log_prob = ComputeLogProbability(*test_frame, log_joint_distribution);
  ASSERT_TRUE_OR_RETURN(test_log_prob != 0.0, 0.0);

  return test_log_prob / golden_log_prob;
}

double ComputeAR30PSNR(const uint32_t* frame1_data,
                       size_t frame1_stride,
                       const uint32_t* frame2_data,
                       size_t frame2_stride,
                       size_t width,
                       size_t height) {
  uint64_t sum_square_error = 0;
  const uint64_t samples =
      static_cast<uint64_t>(width) * static_cast<uint64_t>(height) * 3;

  for (size_t y = 0; y < height; y++) {
    for (size_t x = 0; x < width; x++) {
      const uint32_t pixel1 = frame1_data[y * frame1_stride + x];
      const uint32_t pixel2 = frame2_data[y * frame2_stride + x];
      const int32_t r1 = (pixel1 >> 20) & 0x3FF;
      const int32_t g1 = (pixel1 >> 10) & 0x3FF;
      const int32_t b1 = pixel1 & 0x3FF;
      const int32_t r2 = (pixel2 >> 20) & 0x3FF;
      const int32_t g2 = (pixel2 >> 10) & 0x3FF;
      const int32_t b2 = pixel2 & 0x3FF;

      sum_square_error += (r1 - r2) * (r1 - r2);
      sum_square_error += (g1 - g2) * (g1 - g2);
      sum_square_error += (b1 - b2) * (b1 - b2);
    }
  }

  if (!sum_square_error) {
    return kMaxPsnr;
  }

  double inverse_mse =
      static_cast<double>(samples) / static_cast<double>(sum_square_error);
  double psnr = 10.0 * log10(1023.0 * 1023.0 * inverse_mse);

  return psnr > kMaxPsnr ? kMaxPsnr : psnr;
}
}  // namespace test
}  // namespace media