1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
media / gpu / test / video_test_helpers.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/test/video_test_helpers.h"
#include <array>
#include <limits>
#include <numeric>
#include "base/compiler_specific.h"
#include "base/containers/span.h"
#include "base/containers/span_writer.h"
#include "base/functional/callback_helpers.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/memory/read_only_shared_memory_region.h"
#include "base/memory/shared_memory_mapping.h"
#include "base/numerics/byte_conversions.h"
#include "base/stl_util.h"
#include "gpu/ipc/common/gpu_memory_buffer_support.h"
#include "media/base/format_utils.h"
#include "media/base/video_codecs.h"
#include "media/base/video_frame_layout.h"
#include "media/gpu/test/raw_video.h"
#include "media/gpu/test/video_frame_helpers.h"
#include "media/media_buildflags.h"
#include "mojo/public/cpp/system/buffer.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/libyuv/include/libyuv/planar_functions.h"
#if BUILDFLAG(USE_CHROMEOS_MEDIA_ACCELERATION)
#include "media/gpu/chromeos/platform_video_frame_utils.h"
#endif // BUILDFLAG(USE_CHROMEOS_MEDIA_ACCELERATION)
namespace media {
namespace test {
namespace {
constexpr uint16_t kIvfFileHeaderSize = 32;
constexpr size_t kIvfFrameHeaderSize = 12;
constexpr size_t kNALUHeaderSize = 4;
constexpr size_t kNALUReducedHeaderSize = 3;
// If |reverse| is true , GetNextFrame() for a frame returns frames in a
// round-trip playback fashion (0, 1,.., |num_frames| - 2, |num_frames| - 1,
// |num_frames| - 2, |num_frames_| - 3,.., 1, 0, 1, 2,..).
// If |reverse| is false, GetNextFrame() just loops the stream (0, 1,..,
// |num_frames| - 2, |num_frames| - 1, 0, 1,..).
uint32_t GetReadFrameIndex(uint32_t frame_index,
bool reverse,
uint32_t num_frames) {
CHECK_GT(num_frames, 1u);
if (!reverse)
return frame_index % num_frames;
// 0, .., num_frames - 1, num_frames - 2
// 0-num_frame, num_frames - 1, ... 1, 0, 1, nu
const size_t num_frames_in_loop = num_frames + num_frames - 2;
frame_index = frame_index % num_frames_in_loop;
if (frame_index < num_frames) {
return frame_index;
}
frame_index -= num_frames;
return num_frames - 2 - frame_index;
}
} // namespace
IvfFileHeader GetIvfFileHeader(base::span<const uint8_t> data) {
LOG_ASSERT(data.size_bytes() == 32u);
IvfFileHeader file_header;
base::byte_span_from_ref(file_header).copy_from(data.first<32u>());
return file_header;
}
IvfFrameHeader GetIvfFrameHeader(base::span<const uint8_t> data) {
LOG_ASSERT(data.size_bytes() == 12u);
IvfFrameHeader frame_header;
auto [frame_size, timestamp] = data.first<12u>().split_at<4u>();
frame_header.frame_size = base::U32FromLittleEndian(frame_size);
frame_header.timestamp = base::U64FromLittleEndian(timestamp);
return frame_header;
}
IvfWriter::IvfWriter(base::FilePath output_filepath) {
output_file_ = base::File(
output_filepath, base::File::FLAG_CREATE_ALWAYS | base::File::FLAG_WRITE);
LOG_ASSERT(output_file_.IsValid());
}
bool IvfWriter::WriteFileHeader(VideoCodec codec,
const gfx::Size& resolution,
uint32_t frame_rate,
uint32_t num_frames) {
constexpr uint16_t kVersion = 0;
char ivf_header[kIvfFileHeaderSize] = {};
auto writer = base::SpanWriter(base::as_writable_byte_span(ivf_header));
// Bytes 0-3 of an IVF file header always contain the signature 'DKIF'.
writer.Write(base::as_byte_span({'D', 'K', 'I', 'F'}));
writer.WriteU16LittleEndian(kVersion);
writer.WriteU16LittleEndian(kIvfFileHeaderSize);
switch (codec) {
case VideoCodec::kVP8:
writer.Write(base::as_byte_span({'V', 'P', '8', '0'}));
break;
case VideoCodec::kVP9:
writer.Write(base::as_byte_span({'V', 'P', '9', '0'}));
break;
case VideoCodec::kAV1:
writer.Write(base::as_byte_span({'A', 'V', '0', '1'}));
break;
default:
LOG(ERROR) << "Unknown codec: " << GetCodecName(codec);
return false;
}
writer.WriteU16LittleEndian(resolution.width());
writer.WriteU16LittleEndian(resolution.height());
writer.WriteU32LittleEndian(frame_rate);
writer.WriteU32LittleEndian(1u);
writer.WriteU32LittleEndian(num_frames);
// Reserved.
writer.WriteU32LittleEndian(0u);
CHECK_EQ(writer.remaining(), 0u);
return output_file_.WriteAtCurrentPosAndCheck(base::as_byte_span(ivf_header));
}
bool IvfWriter::WriteFrame(uint32_t data_size,
uint64_t timestamp,
const uint8_t* data) {
std::array<char, kIvfFrameHeaderSize> ivf_frame_header = {};
memcpy(&ivf_frame_header[0], &data_size, sizeof(data_size));
memcpy(&ivf_frame_header[4], ×tamp, sizeof(timestamp));
if (!output_file_.WriteAtCurrentPosAndCheck(
base::as_byte_span(ivf_frame_header))) {
return false;
}
auto data_span = UNSAFE_TODO(base::span(data, data_size));
return output_file_.WriteAtCurrentPosAndCheck(data_span);
}
// static
std::unique_ptr<EncodedDataHelper> EncodedDataHelper::Create(
base::span<const uint8_t> stream,
VideoCodec codec) {
if (codec == VideoCodec::kH264) {
return std::make_unique<EncodedDataHelperH26x>(std::move(stream), codec);
}
if (codec == VideoCodec::kHEVC) {
// Depending on ENABLE_HEVC_PARSER_AND_HW_DECODER, use a sophisticated H265
// parser or the same NALU hunter as EncodedDataHelperH26x.
#if BUILDFLAG(ENABLE_HEVC_PARSER_AND_HW_DECODER)
return std::make_unique<EncodedDataHelperH265>(std::move(stream), codec);
#else
return std::make_unique<EncodedDataHelperH26x>(std::move(stream), codec);
#endif
}
if (codec == VideoCodec::kVP8 || codec == VideoCodec::kVP9 ||
codec == VideoCodec::kAV1) {
return std::make_unique<EncodedDataHelperIVF>(std::move(stream), codec);
}
NOTREACHED() << "Unsupported codec " << GetCodecName(codec);
}
// static
bool EncodedDataHelper::HasConfigInfo(const uint8_t* data,
size_t size,
VideoCodec codec) {
CHECK(codec == media::VideoCodec::kH264 || codec == media::VideoCodec::kHEVC)
<< "Unsupported codec " << GetCodecName(codec);
return EncodedDataHelperH26x::HasConfigInfo(data, size, codec);
}
EncodedDataHelper::EncodedDataHelper(base::span<const uint8_t> stream,
VideoCodec codec)
: data_(std::string(reinterpret_cast<const char*>(stream.data()),
stream.size())),
codec_(codec) {}
EncodedDataHelper::~EncodedDataHelper() {
base::STLClearObject(&data_);
}
void EncodedDataHelper::Rewind() {
next_pos_to_parse_ = 0;
}
bool EncodedDataHelper::ReachEndOfStream() const {
return next_pos_to_parse_ == data_.size();
}
EncodedDataHelperH26x::EncodedDataHelperH26x(base::span<const uint8_t> stream,
VideoCodec codec)
: EncodedDataHelper(std::move(stream), codec) {}
// static
bool EncodedDataHelperH26x::HasConfigInfo(const uint8_t* data,
size_t size,
VideoCodec codec) {
// Check if this is an H264 SPS NALU w/ a kNALUReducedHeaderSize or
// kNALUHeaderSize byte start code.
if (codec == media::VideoCodec::kH264) {
return (size > kNALUReducedHeaderSize && data[0] == 0x0 && data[1] == 0x0 &&
data[2] == 0x1 && (data[kNALUReducedHeaderSize] & 0x1f) == 0x7) ||
(size > kNALUHeaderSize && data[0] == 0x0 && data[1] == 0x0 &&
data[2] == 0x0 && data[3] == 0x1 &&
(data[kNALUHeaderSize] & 0x1f) == 0x7);
}
CHECK_EQ(codec, media::VideoCodec::kHEVC);
return (size > kNALUReducedHeaderSize && data[0] == 0x0 && data[1] == 0x0 &&
data[2] == 0x1 && (data[kNALUReducedHeaderSize] & 0x7e) == 0x42) ||
(size > kNALUHeaderSize && data[0] == 0x0 && data[1] == 0x0 &&
data[2] == 0x0 && data[3] == 0x1 &&
(data[kNALUHeaderSize] & 0x7e) == 0x42);
}
scoped_refptr<DecoderBuffer> EncodedDataHelperH26x::GetNextBuffer() {
if (next_pos_to_parse_ == 0) {
if (!LookForSPS()) {
next_pos_to_parse_ = 0;
return nullptr;
}
}
size_t start_pos = next_pos_to_parse_;
size_t next_nalu_pos = GetBytesForNextNALU(start_pos);
// Update next_pos_to_parse_.
next_pos_to_parse_ = next_nalu_pos;
return DecoderBuffer::CopyFrom(
base::as_byte_span(data_).subspan(start_pos, next_nalu_pos - start_pos));
}
size_t EncodedDataHelperH26x::GetBytesForNextNALU(size_t start_pos) {
size_t pos = start_pos;
if (pos + kNALUHeaderSize > data_.size()) {
return pos;
}
if (!IsNALHeader(data_, pos)) {
ADD_FAILURE();
return std::numeric_limits<std::size_t>::max();
}
pos += kNALUHeaderSize;
while (pos + kNALUHeaderSize <= data_.size() && !IsNALHeader(data_, pos)) {
++pos;
}
if (pos + kNALUReducedHeaderSize >= data_.size()) {
pos = data_.size();
}
return pos;
}
bool EncodedDataHelperH26x::IsNALHeader(const std::string& data, size_t pos) {
return data[pos] == 0 && data[pos + 1] == 0 && data[pos + 2] == 0 &&
data[pos + 3] == 1;
}
bool EncodedDataHelperH26x::LookForSPS() {
while (next_pos_to_parse_ + kNALUHeaderSize < data_.size()) {
if (codec_ == VideoCodec::kH264 &&
(data_[next_pos_to_parse_ + kNALUHeaderSize] & 0x1f) == 0x7) {
return true;
} else if (codec_ == VideoCodec::kHEVC &&
(data_[next_pos_to_parse_ + kNALUHeaderSize] & 0x7e) == 0x42) {
return true;
}
next_pos_to_parse_ = GetBytesForNextNALU(next_pos_to_parse_);
}
return false;
}
#if BUILDFLAG(ENABLE_HEVC_PARSER_AND_HW_DECODER)
EncodedDataHelperH265::EncodedDataHelperH265(base::span<const uint8_t> stream,
VideoCodec codec)
: EncodedDataHelper(std::move(stream), codec),
h265_parser_(std::make_unique<H265Parser>()) {
h265_parser_->SetStream(reinterpret_cast<uint8_t*>(data_.data()),
data_.size());
}
EncodedDataHelperH265::~EncodedDataHelperH265() = default;
scoped_refptr<DecoderBuffer> EncodedDataHelperH265::GetNextBuffer() {
CHECK(h265_parser_);
// This method is expected to send back DecoderBuffers with full frames, but
// oftentimes NALUs are only slices and part of a frame. HEVC uses SPS/PPS/SEI
// NALUs and "data" NALU's |first_slice_segment_in_pic_flag| flag to delimit
// those full frames; these mark what's loosely called "first-slice" (of a
// frame) or a "(new) frame boundary":
//
// - VPS/SPS/PPS/SEI etc NALUs always mark a new frame boundary.
// - A |first_slice_segment_in_pic_flag| of 1/true also marks a new frame
// boundary.
// - A |first_slice_segment_in_pic_flag| of 0/false means that the current
// slice is part of a larger frame (and should be stored for later
// reassembly.
//
// Note how we can only tell that a full frame is seen when we parse the
// _next_ NALU (or the stream ends). This complicates the code below greatly,
// since it needs to accumulate NALUs for later reassembly.
while (true) {
H265NALU nalu;
{
const auto result = h265_parser_->AdvanceToNextNALU(&nalu);
if (result == H265Parser::kEOStream) {
// |h265_parser_| has consumed all the data that was passed to it. This
// inherently signals a frame boundary.
auto decoder_buffer = ReassembleNALUs(previous_nalus_);
previous_nalus_.clear();
return decoder_buffer;
}
if (result == H265Parser::kInvalidStream ||
result == H265Parser::kUnsupportedStream) {
LOG(ERROR) << __func__ << " Invalid or unsupported bitstream";
return nullptr;
}
CHECK_EQ(result, H265Parser::kOk);
}
CHECK_LE(nalu.data,
reinterpret_cast<uint8_t*>(data_.data()) + data_.size());
CHECK_LE(nalu.data + nalu.size,
reinterpret_cast<uint8_t*>(data_.data()) + data_.size());
struct NALUMetadata nalu_metadata;
nalu_metadata.start_pointer =
reinterpret_cast<uint8_t*>(data_.data()) + next_pos_to_parse_;
nalu_metadata.start_index = next_pos_to_parse_;
nalu_metadata.header_size = nalu.data - nalu_metadata.start_pointer;
nalu_metadata.size_with_header = nalu_metadata.header_size + nalu.size;
VLOG(2) << "NALU (" << nalu.nal_unit_type << ") found " << nalu_metadata
<< " next_pos_to_parse_=" << next_pos_to_parse_;
next_pos_to_parse_ += nalu_metadata.size_with_header;
bool is_new_frame_boundary = false;
switch (nalu.nal_unit_type) {
case H265NALU::SPS_NUT: {
int sps_id;
const auto result = h265_parser_->ParseSPS(&sps_id);
if (result != H265Parser::kOk) {
LOG(ERROR) << __func__ << "Error parsing SPS";
return nullptr;
}
is_new_frame_boundary = true;
break;
}
case H265NALU::PPS_NUT: {
int pps_id;
const auto result = h265_parser_->ParsePPS(nalu, &pps_id);
if (result != H265Parser::kOk) {
LOG(ERROR) << __func__ << "Error parsing PPS";
return nullptr;
}
is_new_frame_boundary = true;
break;
}
case H265NALU::BLA_W_LP:
case H265NALU::BLA_W_RADL:
case H265NALU::BLA_N_LP:
case H265NALU::IDR_W_RADL:
case H265NALU::IDR_N_LP:
case H265NALU::TRAIL_N:
case H265NALU::TRAIL_R:
case H265NALU::TSA_N:
case H265NALU::TSA_R:
case H265NALU::STSA_N:
case H265NALU::STSA_R:
case H265NALU::RADL_N:
case H265NALU::RADL_R:
case H265NALU::RASL_N:
case H265NALU::RASL_R:
case H265NALU::CRA_NUT: {
auto current_slice_header = std::make_unique<H265SliceHeader>();
const auto result = h265_parser_->ParseSliceHeader(
nalu, current_slice_header.get(), previous_slice_header_.get());
if (result != H265Parser::kOk) {
LOG(ERROR) << __func__ << "Error parsing slice header";
return nullptr;
}
is_new_frame_boundary =
current_slice_header->first_slice_segment_in_pic_flag;
VLOG_IF(4, is_new_frame_boundary) << "|is_new_frame_boundary|";
previous_slice_header_ = std::move(current_slice_header);
break;
}
default: // Not a special NALU. Assume it marks the start of a new frame.
is_new_frame_boundary = true;
break;
}
if (!is_new_frame_boundary) {
VLOG(3) << "Storing current NALU " << nalu_metadata;
previous_nalus_.push_back(std::move(nalu_metadata));
continue;
}
const bool is_stand_alone_NALU = nalu.nal_unit_type >= H265NALU::VPS_NUT;
if (previous_nalus_.empty() && is_stand_alone_NALU) {
// Nothing stored from before, return the current NALU instantly (this is
// the case for e.g. SPS/PPS/SEI).
VLOG(3) << "Returning current NALU " << nalu_metadata;
return DecoderBuffer::CopyFrom(base::as_byte_span(data_).subspan(
nalu_metadata.start_index, nalu_metadata.size_with_header));
}
if (previous_nalus_.empty()) {
VLOG(3) << "Storing current NALU " << nalu_metadata;
previous_nalus_.push_back(std::move(nalu_metadata));
continue;
}
// Accumulate what we have and send it; store |nalu_metadata| for later.
auto decoder_buffer = ReassembleNALUs(previous_nalus_);
previous_nalus_.clear();
VLOG(3) << "Storing current NALU " << nalu_metadata;
previous_nalus_.push_back(std::move(nalu_metadata));
return decoder_buffer;
}
}
bool EncodedDataHelperH265::ReachEndOfStream() const {
return EncodedDataHelper::ReachEndOfStream() && previous_nalus_.empty();
}
void EncodedDataHelperH265::Rewind() {
h265_parser_->Reset();
h265_parser_->SetStream(reinterpret_cast<uint8_t*>(data_.data()),
data_.size());
previous_nalus_.clear();
EncodedDataHelper::Rewind();
}
scoped_refptr<DecoderBuffer> EncodedDataHelperH265::ReassembleNALUs(
const std::vector<struct NALUMetadata>& nalus) {
if (nalus.empty()) {
return nullptr;
}
const size_t total_size = std::accumulate(
nalus.begin(), nalus.end(), 0, [](size_t total, NALUMetadata metadata) {
return total + metadata.size_with_header;
});
VLOG(4) << "Reassembling " << nalus.size() << " NALUs, " << total_size << "B";
return DecoderBuffer::CopyFrom(base::as_byte_span(data_).subspan(
nalus.begin()->start_index, total_size));
}
#endif // BUILDFLAG(ENABLE_HEVC_PARSER_AND_HW_DECODER)
EncodedDataHelperIVF::EncodedDataHelperIVF(base::span<const uint8_t> stream,
VideoCodec codec)
: EncodedDataHelper(std::move(stream), codec) {}
scoped_refptr<DecoderBuffer> EncodedDataHelperIVF::GetNextBuffer() {
// Helpful description: http://wiki.multimedia.cx/index.php?title=IVF
// Only IVF video files are supported. The first 4bytes of an IVF video file's
// header should be "DKIF".
if (next_pos_to_parse_ == 0) {
if (data_.size() < kIvfFileHeaderSize) {
LOG(ERROR) << "data is too small";
return nullptr;
}
auto ivf_header = GetIvfFileHeader(base::span<const uint8_t>(
reinterpret_cast<const uint8_t*>(&data_[0]), kIvfFileHeaderSize));
if (strncmp(ivf_header.signature, "DKIF", kNALUHeaderSize) != 0) {
LOG(ERROR) << "Unexpected data encountered while parsing IVF header";
return nullptr;
}
next_pos_to_parse_ = kIvfFileHeaderSize; // Skip IVF header.
}
std::vector<IvfFrame> ivf_frames;
auto frame_data = ReadNextIvfFrame();
if (!frame_data) {
LOG(ERROR) << "No IVF frame is available";
return nullptr;
}
ivf_frames.push_back(*frame_data);
if (codec_ == VideoCodec::kVP9 || codec_ == VideoCodec::kAV1) {
// Group IVF data whose timestamps are the same in VP9 and AV1. Spatial
// layers in a spatial-SVC stream may separately be stored in IVF data,
// where the timestamps of the IVF frame headers are the same. However, it
// is necessary for VD(A) to feed the spatial layers by a single
// DecoderBuffer. So this grouping is required.
while (!ReachEndOfStream()) {
auto frame_header = GetNextIvfFrameHeader();
if (!frame_header) {
LOG(ERROR) << "No IVF frame header is available";
return nullptr;
}
// Timestamp is different from the current one. The next IVF data must be
// grouped in the next group.
if (frame_header->timestamp != ivf_frames[0].header.timestamp)
break;
frame_data = ReadNextIvfFrame();
if (!frame_data) {
LOG(ERROR) << "No IVF frame is available";
return nullptr;
}
ivf_frames.push_back(*frame_data);
}
}
// Standard stream case.
if (ivf_frames.size() == 1) {
return DecoderBuffer::CopyFrom(
// TODO(crbug.com/40284755): spanify `IvfFrame`.
UNSAFE_TODO(base::span(ivf_frames[0].data.get(),
ivf_frames[0].header.frame_size)));
}
if (ivf_frames.size() > 3) {
LOG(ERROR) << "Number of IVF frames with same timestamps exceeds maximum of"
<< "3: ivf_frames.size()=" << ivf_frames.size();
return nullptr;
}
std::string data;
std::vector<uint32_t> frame_sizes;
frame_sizes.reserve(ivf_frames.size());
for (const IvfFrame& ivf : ivf_frames) {
data.append(reinterpret_cast<const char*>(ivf.data.get()),
ivf.header.frame_size);
frame_sizes.push_back(ivf.header.frame_size);
}
auto buffer = DecoderBuffer::CopyFrom(base::as_byte_span(data));
buffer->WritableSideData().spatial_layers = frame_sizes;
return buffer;
}
std::optional<IvfFrameHeader> EncodedDataHelperIVF::GetNextIvfFrameHeader()
const {
const size_t pos = next_pos_to_parse_;
// Read VP8/9 frame size from IVF header.
if (pos + kIvfFrameHeaderSize > data_.size()) {
LOG(ERROR) << "Unexpected data encountered while parsing IVF frame header";
return std::nullopt;
}
return GetIvfFrameHeader(base::span<const uint8_t>(
reinterpret_cast<const uint8_t*>(&data_[pos]), kIvfFrameHeaderSize));
}
std::optional<IvfFrame> EncodedDataHelperIVF::ReadNextIvfFrame() {
auto frame_header = GetNextIvfFrameHeader();
if (!frame_header)
return std::nullopt;
// Skip IVF frame header.
const size_t pos = next_pos_to_parse_ + kIvfFrameHeaderSize;
// Make sure we are not reading out of bounds.
if (pos + frame_header->frame_size > data_.size()) {
LOG(ERROR) << "Unexpected data encountered while parsing IVF frame header";
next_pos_to_parse_ = data_.size();
return std::nullopt;
}
// Update next_pos_to_parse_.
next_pos_to_parse_ = pos + frame_header->frame_size;
return IvfFrame{*frame_header, reinterpret_cast<uint8_t*>(&data_[pos])};
}
struct AlignedDataHelper::VideoFrameData {
VideoFrameData() = default;
explicit VideoFrameData(base::ReadOnlySharedMemoryRegion shmem_region)
: shmem_region(std::move(shmem_region)) {}
explicit VideoFrameData(gfx::GpuMemoryBufferHandle gmb_handle)
: gmb_handle(std::move(gmb_handle)) {}
VideoFrameData(VideoFrameData&&) = default;
VideoFrameData& operator=(VideoFrameData&&) = default;
VideoFrameData(const VideoFrameData&) = delete;
VideoFrameData& operator=(const VideoFrameData&) = delete;
base::ReadOnlySharedMemoryRegion shmem_region;
gfx::GpuMemoryBufferHandle gmb_handle;
};
AlignedDataHelper::AlignedDataHelper(const RawVideo* video,
uint32_t num_read_frames,
bool reverse,
const gfx::Size& aligned_coded_size,
const gfx::Size& natural_size,
uint32_t frame_rate,
VideoFrame::StorageType storage_type)
: video_(video),
num_frames_(video_->NumFrames()),
num_read_frames_(num_read_frames),
reverse_(reverse),
create_frame_mode_(num_frames_ > RawVideo::kLimitedReadFrames
? CreateFrameMode::kOnDemand
: CreateFrameMode::kAllAtOnce),
storage_type_(storage_type),
visible_rect_(video_->VisibleRect()),
natural_size_(natural_size),
time_stamp_interval_(base::Seconds(/*secs=*/0u)),
elapsed_frame_time_(base::Seconds(/*secs=*/0u)) {
// If the frame_rate is passed in, then use that timing information
// to generate timestamps that increment according the frame_rate.
// Otherwise timestamps will be generated when GetNextFrame() is called
UpdateFrameRate(frame_rate);
if (storage_type_ == VideoFrame::STORAGE_GPU_MEMORY_BUFFER) {
#if BUILDFLAG(USE_CHROMEOS_MEDIA_ACCELERATION)
layout_ = GetPlatformVideoFrameLayout(
video_->PixelFormat(), aligned_coded_size,
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE);
#endif // BUILDFLAG(USE_CHROMEOS_MEDIA_ACCELERATION)
} else {
layout_ = CreateVideoFrameLayout(video_->PixelFormat(), aligned_coded_size,
kPlatformBufferAlignment);
}
LOG_ASSERT(layout_) << "Failed creating VideoFrameLayout";
if (create_frame_mode_ == CreateFrameMode::kOnDemand) {
return;
}
video_frame_data_.resize(num_frames_);
for (size_t i = 0; i < num_frames_; i++) {
video_frame_data_[i] = CreateVideoFrameData(
storage_type_, video->GetFrame(i), video_->FrameLayout(), *layout_);
}
LOG_ASSERT(video_frame_data_.size() == num_frames_)
<< "Failed to initialize VideoFrames";
}
AlignedDataHelper::~AlignedDataHelper() {}
void AlignedDataHelper::Rewind() {
frame_index_ = 0;
}
bool AlignedDataHelper::AtHeadOfStream() const {
return frame_index_ == 0;
}
bool AlignedDataHelper::AtEndOfStream() const {
return frame_index_ == num_read_frames_;
}
void AlignedDataHelper::UpdateFrameRate(uint32_t frame_rate) {
if (frame_rate == 0) {
time_stamp_interval_ = base::Seconds(/*secs=*/0u);
} else {
time_stamp_interval_ = base::Seconds(/*secs=*/1u) / frame_rate;
}
}
scoped_refptr<VideoFrame> AlignedDataHelper::GetNextFrame() {
LOG_ASSERT(!AtEndOfStream());
base::TimeDelta frame_timestamp;
if (time_stamp_interval_.is_zero())
frame_timestamp = base::TimeTicks::Now().since_origin();
else
frame_timestamp = elapsed_frame_time_;
elapsed_frame_time_ += time_stamp_interval_;
const uint32_t read_frame_index =
GetReadFrameIndex(frame_index_++, reverse_, num_frames_);
if (create_frame_mode_ == CreateFrameMode::kOnDemand) {
auto frame_data = video_->GetFrame(read_frame_index);
VideoFrameData video_frame_data = CreateVideoFrameData(
storage_type_, frame_data, video_->FrameLayout(), *layout_);
return CreateVideoFrameFromVideoFrameData(video_frame_data,
frame_timestamp);
} else {
return CreateVideoFrameFromVideoFrameData(
video_frame_data_[read_frame_index], frame_timestamp);
}
}
scoped_refptr<VideoFrame> AlignedDataHelper::CreateVideoFrameFromVideoFrameData(
const VideoFrameData& video_frame_data,
base::TimeDelta frame_timestamp) const {
if (storage_type_ == VideoFrame::STORAGE_GPU_MEMORY_BUFFER) {
const auto& gmb_handle = video_frame_data.gmb_handle;
auto dup_handle = gmb_handle.Clone();
if (dup_handle.is_null()) {
LOG(ERROR) << "Failed duplicating GpuMemoryBufferHandle";
return nullptr;
}
std::optional<gfx::BufferFormat> buffer_format =
VideoPixelFormatToGfxBufferFormat(layout_->format());
if (!buffer_format) {
LOG(ERROR) << "Unexpected format: " << layout_->format();
return nullptr;
}
// Create GpuMemoryBuffer from GpuMemoryBufferHandle.
gpu::GpuMemoryBufferSupport support;
auto gpu_memory_buffer = support.CreateGpuMemoryBufferImplFromHandle(
std::move(dup_handle), layout_->coded_size(), *buffer_format,
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE,
base::DoNothing());
if (!gpu_memory_buffer) {
LOG(ERROR) << "Failed to create GpuMemoryBuffer from "
<< "GpuMemoryBufferHandle";
return nullptr;
}
return media::VideoFrame::WrapExternalGpuMemoryBuffer(
visible_rect_, natural_size_, std::move(gpu_memory_buffer),
frame_timestamp);
} else {
const auto& shmem_region = video_frame_data.shmem_region;
auto dup_region = shmem_region.Duplicate();
if (!dup_region.IsValid()) {
LOG(ERROR) << "Failed duplicating shmem region";
return nullptr;
}
base::ReadOnlySharedMemoryMapping mapping = shmem_region.Map();
uint8_t* buf = const_cast<uint8_t*>(mapping.GetMemoryAs<uint8_t>());
std::array<uint8_t*, 3> data = {};
for (size_t i = 0; i < layout_->planes().size(); i++)
data[i] = buf + layout_->planes()[i].offset;
auto frame = media::VideoFrame::WrapExternalYuvDataWithLayout(
*layout_, visible_rect_, natural_size_, data[0], data[1], data[2],
frame_timestamp);
DCHECK(frame);
frame->BackWithOwnedSharedMemory(std::move(dup_region), std::move(mapping));
return frame;
}
}
// static
AlignedDataHelper::VideoFrameData AlignedDataHelper::CreateVideoFrameData(
VideoFrame::StorageType storage_type,
const RawVideo::FrameData& src_frame,
const VideoFrameLayout& src_layout,
const VideoFrameLayout& dst_layout) {
LOG_ASSERT(gfx::Rect(dst_layout.coded_size())
.Contains(gfx::Rect(src_layout.coded_size())))
<< "The destination buffer resolution must not be smaller than the "
"source buffer resolution";
const VideoPixelFormat pixel_format = src_layout.format();
const gfx::Size& resolution = src_layout.coded_size();
if (storage_type == VideoFrame::STORAGE_GPU_MEMORY_BUFFER) {
#if BUILDFLAG(USE_CHROMEOS_MEDIA_ACCELERATION)
// First write into on-memory frame.
auto memory_frame =
VideoFrame::CreateFrame(pixel_format, resolution, gfx::Rect(resolution),
resolution, base::TimeDelta());
LOG_ASSERT(!!memory_frame) << "Failed creating VideoFrame";
for (size_t i = 0; i < src_layout.planes().size(); i++) {
libyuv::CopyPlane(
src_frame.plane_addrs[i], src_frame.strides[i],
memory_frame->writable_data(i), memory_frame->stride(i),
VideoFrame::RowBytes(i, pixel_format, resolution.width()),
VideoFrame::Rows(i, pixel_format, resolution.height()));
}
// Create GpuMemoryBuffer VideoFrame from the on-memory VideoFrame.
auto frame = CloneVideoFrame(
memory_frame.get(), dst_layout, VideoFrame::STORAGE_GPU_MEMORY_BUFFER,
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE);
LOG_ASSERT(!!frame) << "Failed creating GpuMemoryBuffer VideoFrame";
auto gmb_handle = CreateGpuMemoryBufferHandle(frame.get());
LOG_ASSERT(!gmb_handle.is_null())
<< "Failed creating GpuMemoryBufferHandle";
return VideoFrameData(std::move(gmb_handle));
#else
NOTREACHED();
#endif // BUILDFLAG(USE_CHROMEOS_MEDIA_ACCELERATION)
} else {
const size_t dst_video_frame_size =
dst_layout.planes().back().offset + dst_layout.planes().back().size;
auto mapped_region =
base::ReadOnlySharedMemoryRegion::Create(dst_video_frame_size);
LOG_ASSERT(mapped_region.IsValid()) << "Failed allocating a region";
base::WritableSharedMemoryMapping& mapping = mapped_region.mapping;
LOG_ASSERT(mapping.IsValid());
uint8_t* buffer = mapping.GetMemoryAs<uint8_t>();
for (size_t i = 0; i < src_layout.planes().size(); i++) {
auto dst_plane_layout = dst_layout.planes()[i];
uint8_t* dst_ptr = &buffer[dst_plane_layout.offset];
libyuv::CopyPlane(
src_frame.plane_addrs[i], src_frame.strides[i], dst_ptr,
dst_plane_layout.stride,
VideoFrame::RowBytes(i, pixel_format, resolution.width()),
VideoFrame::Rows(i, pixel_format, resolution.height()));
}
return VideoFrameData(std::move(mapped_region.region));
}
}
// static
RawDataHelper::RawDataHelper(const RawVideo* video, bool reverse)
: video_(video), reverse_(reverse) {}
RawDataHelper::~RawDataHelper() = default;
scoped_refptr<const VideoFrame> RawDataHelper::GetFrame(size_t index) const {
uint32_t read_frame_index =
GetReadFrameIndex(index, reverse_, video_->NumFrames());
std::array<uint8_t*, VideoFrame::kMaxPlanes> frame_data = {};
const size_t num_planes = VideoFrame::NumPlanes(video_->PixelFormat());
RawVideo::FrameData src_frame = video_->GetFrame(read_frame_index);
for (size_t i = 0; i < num_planes; ++i) {
// The data is never modified but WrapExternalYuvDataWithLayout() only
// accepts non-const pointer.
frame_data[i] = const_cast<uint8_t*>(src_frame.plane_addrs[i]);
}
scoped_refptr<VideoFrame> video_frame =
VideoFrame::WrapExternalYuvDataWithLayout(
video_->FrameLayout(), video_->VisibleRect(),
video_->VisibleRect().size(), frame_data[0], frame_data[1],
frame_data[2], base::TimeTicks::Now().since_origin());
video_frame->AddDestructionObserver(
base::DoNothingWithBoundArgs(std::move(src_frame)));
return video_frame;
}
} // namespace test
} // namespace media