1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
media / gpu / v4l2 / legacy / v4l2_video_decode_accelerator.cc [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/legacy/v4l2_video_decode_accelerator.h"
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/videodev2.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "base/command_line.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/numerics/safe_conversions.h"
#include "base/posix/eintr_wrapper.h"
#include "base/ranges/algorithm.h"
#include "base/strings/stringprintf.h"
#include "base/task/single_thread_task_runner.h"
#include "base/time/time.h"
#include "base/trace_event/memory_dump_manager.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "media/base/media_switches.h"
#include "media/base/video_frame_layout.h"
#include "media/base/video_types.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/chromeos/native_pixmap_frame_resource.h"
#include "media/gpu/chromeos/platform_video_frame_utils.h"
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
#include "media/gpu/chromeos/video_frame_resource.h"
#endif
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_image_processor_backend.h"
#include "media/gpu/v4l2/v4l2_utils.h"
#include "media/gpu/v4l2/v4l2_vda_helpers.h"
#include "media/gpu/video_frame_mapper.h"
#include "media/gpu/video_frame_mapper_factory.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/native_pixmap_handle.h"
#define NOTIFY_ERROR(x) \
do { \
VLOGF(1) << "Setting error state:" << x; \
SetErrorState(x); \
} while (0)
#define IOCTL_OR_ERROR_RETURN_VALUE(type, arg, value, type_str) \
do { \
if (device_->Ioctl(type, arg) != 0) { \
PLOG(ERROR) << "ioctl() failed: " << type_str; \
NOTIFY_ERROR(PLATFORM_FAILURE); \
return value; \
} \
} while (0)
#define IOCTL_OR_ERROR_RETURN(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, ((void)0), #type)
#define IOCTL_OR_ERROR_RETURN_FALSE(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, false, #type)
#define IOCTL_OR_LOG_ERROR(type, arg) \
do { \
if (device_->Ioctl(type, arg) != 0) \
VPLOGF(1) << "ioctl() failed: " << #type; \
} while (0)
namespace media {
namespace {
bool IsVp9KSVCStream(uint32_t input_format_fourcc,
const DecoderBuffer& decoder_buffer) {
return input_format_fourcc == V4L2_PIX_FMT_VP9 &&
decoder_buffer.side_data() &&
!decoder_buffer.side_data()->spatial_layers.empty();
}
} // namespace
static const std::vector<uint32_t> kSupportedInputFourCCs = {
V4L2_PIX_FMT_H264,
V4L2_PIX_FMT_VP8,
V4L2_PIX_FMT_VP9,
};
// static
base::AtomicRefCount V4L2VideoDecodeAccelerator::num_instances_(0);
struct V4L2VideoDecodeAccelerator::BitstreamBufferRef {
BitstreamBufferRef(
base::WeakPtr<Client>& client,
scoped_refptr<base::SequencedTaskRunner>& client_task_runner,
scoped_refptr<DecoderBuffer> buffer,
int32_t input_id);
~BitstreamBufferRef();
const base::WeakPtr<Client> client;
const scoped_refptr<base::SequencedTaskRunner> client_task_runner;
scoped_refptr<DecoderBuffer> buffer;
size_t bytes_used;
const int32_t input_id;
};
V4L2VideoDecodeAccelerator::BitstreamBufferRef::BitstreamBufferRef(
base::WeakPtr<Client>& client,
scoped_refptr<base::SequencedTaskRunner>& client_task_runner,
scoped_refptr<DecoderBuffer> buffer,
int32_t input_id)
: client(client),
client_task_runner(client_task_runner),
buffer(std::move(buffer)),
bytes_used(0),
input_id(input_id) {}
V4L2VideoDecodeAccelerator::BitstreamBufferRef::~BitstreamBufferRef() {
if (input_id >= 0) {
client_task_runner->PostTask(
FROM_HERE,
base::BindOnce(&Client::NotifyEndOfBitstreamBuffer, client, input_id));
}
}
V4L2VideoDecodeAccelerator::OutputRecord::OutputRecord()
: picture_id(-1), cleared(false) {}
V4L2VideoDecodeAccelerator::OutputRecord::OutputRecord(OutputRecord&&) =
default;
V4L2VideoDecodeAccelerator::OutputRecord::~OutputRecord() {}
V4L2VideoDecodeAccelerator::PictureRecord::PictureRecord(bool cleared,
const Picture& picture)
: cleared(cleared), picture(picture) {}
V4L2VideoDecodeAccelerator::PictureRecord::~PictureRecord() {}
V4L2VideoDecodeAccelerator::V4L2VideoDecodeAccelerator(
scoped_refptr<V4L2Device> device)
: can_use_decoder_(num_instances_.Increment() < kMaxNumOfInstances),
child_task_runner_(base::SingleThreadTaskRunner::GetCurrentDefault()),
decoder_thread_("V4L2DecoderThread"),
decoder_state_(kUninitialized),
output_mode_(Config::OutputMode::kAllocate),
device_(std::move(device)),
decoder_delay_bitstream_buffer_id_(-1),
decoder_decode_buffer_tasks_scheduled_(0),
decoder_flushing_(false),
decoder_cmd_supported_(false),
flush_awaiting_last_output_buffer_(false),
reset_pending_(false),
output_dpb_size_(0),
picture_clearing_count_(0),
device_poll_thread_("V4L2DevicePollThread"),
input_format_fourcc_(0),
weak_this_factory_(this) {
weak_this_ = weak_this_factory_.GetWeakPtr();
}
V4L2VideoDecodeAccelerator::~V4L2VideoDecodeAccelerator() {
DCHECK(!decoder_thread_.IsRunning());
DCHECK(!device_poll_thread_.IsRunning());
DVLOGF(2);
// These maps have members that should be manually destroyed, e.g. file
// descriptors, mmap() segments, etc.
DCHECK(output_buffer_map_.empty());
num_instances_.Decrement();
}
bool V4L2VideoDecodeAccelerator::Initialize(const Config& config,
Client* client) {
VLOGF(2) << "profile: " << config.profile
<< ", output_mode=" << static_cast<int>(config.output_mode);
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kUninitialized);
if (!can_use_decoder_) {
VLOGF(1) << "Reached the maximum number of decoder instances";
return false;
}
if (config.is_encrypted()) {
NOTREACHED() << "Encrypted streams are not supported for this VDA";
}
if (config.output_mode != Config::OutputMode::kAllocate &&
config.output_mode != Config::OutputMode::kImport) {
NOTREACHED() << "Only ALLOCATE and IMPORT OutputModes are supported";
}
client_ptr_factory_.reset(new base::WeakPtrFactory<Client>(client));
client_ = client_ptr_factory_->GetWeakPtr();
// If we haven't been set up to decode on separate sequence via
// TryToSetupDecodeOnSeparateSequence(), use the main thread/client for
// decode tasks.
if (!decode_task_runner_) {
decode_task_runner_ = child_task_runner_;
DCHECK(!decode_client_);
decode_client_ = client_;
}
decoder_state_ = kInitialized;
if (!decoder_thread_.Start()) {
LOG(ERROR) << "decoder thread failed to start";
return false;
}
bool result = false;
base::WaitableEvent done;
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoDecodeAccelerator::InitializeTask,
base::Unretained(this), config, &result, &done));
done.Wait();
return result;
}
void V4L2VideoDecodeAccelerator::InitializeTask(const Config& config,
bool* result,
base::WaitableEvent* done) {
DVLOGF(3);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(result, nullptr);
DCHECK_NE(done, nullptr);
DCHECK_EQ(decoder_state_, kInitialized);
TRACE_EVENT0("media,gpu", "V4L2VDA::InitializeTask");
// The client can keep going as soon as the configuration is checked.
// Store the result to the local value to see the result even after |*result|
// is released.
bool config_result = CheckConfig(config);
*result = config_result;
done->Signal();
// No need to keep going is configuration is not supported.
if (!config_result)
return;
container_color_space_ = config.container_color_space;
frame_splitter_ =
v4l2_vda_helpers::InputBufferFragmentSplitter::CreateFromProfile(
config.profile);
if (!frame_splitter_) {
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "media::V4l2VideoDecodeAccelerator", decoder_thread_.task_runner());
// Subscribe to the resolution change event.
struct v4l2_event_subscription sub;
memset(&sub, 0, sizeof(sub));
sub.type = V4L2_EVENT_SOURCE_CHANGE;
IOCTL_OR_ERROR_RETURN(VIDIOC_SUBSCRIBE_EVENT, &sub);
if (!CreateInputBuffers()) {
LOG(ERROR) << "Failed CreatingInputBuffers()";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
decoder_cmd_supported_ = IsDecoderCmdSupported();
StartDevicePoll();
}
bool V4L2VideoDecodeAccelerator::CheckConfig(const Config& config) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
input_format_fourcc_ = VideoCodecProfileToV4L2PixFmt(config.profile, false);
if (input_format_fourcc_ == V4L2_PIX_FMT_INVALID ||
!device_->Open(V4L2Device::Type::kDecoder, input_format_fourcc_)) {
VLOGF(1) << "Failed to open device for profile: " << config.profile
<< " fourcc: " << FourccToString(input_format_fourcc_);
return false;
}
// Capabilities check.
struct v4l2_capability caps;
const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYCAP, &caps);
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
VLOGF(1) << "ioctl() failed: VIDIOC_QUERYCAP"
<< ", caps check failed: 0x" << std::hex << caps.capabilities;
return false;
}
output_mode_ = config.output_mode;
input_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
if (!input_queue_)
return false;
output_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
if (!output_queue_)
return false;
if (!SetupFormats())
return false;
// We have confirmed that |config| is supported, tell the good news to the
// client.
return true;
}
void V4L2VideoDecodeAccelerator::Decode(BitstreamBuffer bitstream_buffer) {
Decode(bitstream_buffer.ToDecoderBuffer(), bitstream_buffer.id());
}
void V4L2VideoDecodeAccelerator::Decode(scoped_refptr<DecoderBuffer> buffer,
int32_t bitstream_id) {
DVLOGF(4) << "input_id=" << bitstream_id
<< ", size=" << (buffer ? buffer->size() : 0);
DCHECK(decode_task_runner_->RunsTasksInCurrentSequence());
if (bitstream_id < 0) {
LOG(ERROR) << "Invalid bitstream buffer, id: " << bitstream_id;
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
// DecodeTask() will take care of running a DecodeBufferTask().
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoDecodeAccelerator::DecodeTask,
base::Unretained(this), std::move(buffer), bitstream_id));
}
void V4L2VideoDecodeAccelerator::AssignPictureBuffers(
const std::vector<PictureBuffer>& buffers) {
VLOGF(2) << "buffer_count=" << buffers.size();
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoDecodeAccelerator::AssignPictureBuffersTask,
base::Unretained(this), buffers));
}
void V4L2VideoDecodeAccelerator::AssignPictureBuffersTask(
const std::vector<PictureBuffer>& buffers) {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kAwaitingPictureBuffers);
DCHECK(output_queue_);
TRACE_EVENT1("media,gpu", "V4L2VDA::AssignPictureBuffersTask", "buffers_size",
buffers.size());
if (IsDestroyPending())
return;
uint32_t req_buffer_count = output_dpb_size_ + kDpbOutputBufferExtraCount;
if (image_processor_device_)
req_buffer_count += kDpbOutputBufferExtraCountForImageProcessor;
if (buffers.size() < req_buffer_count) {
LOG(ERROR) << "Failed to provide requested picture buffers. (Got "
<< buffers.size() << ", requested " << req_buffer_count << ")";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
const bool prefer_software_mt21 =
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
base::FeatureList::IsEnabled(media::kPreferSoftwareMT21);
#else
false;
#endif
enum v4l2_memory memory;
if (!image_processor_device_ && !prefer_software_mt21 &&
output_mode_ == Config::OutputMode::kImport) {
memory = V4L2_MEMORY_DMABUF;
} else {
memory = V4L2_MEMORY_MMAP;
}
if (output_queue_->AllocateBuffers(buffers.size(), memory,
prefer_software_mt21) == 0) {
LOG(ERROR) << "Failed to request buffers!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (output_queue_->AllocatedBuffersCount() != buffers.size()) {
LOG(ERROR) << "Could not allocate requested number of output buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
DCHECK(output_buffer_map_.empty());
DCHECK(output_wait_map_.empty());
output_buffer_map_.resize(buffers.size());
if (image_processor_device_ && output_mode_ == Config::OutputMode::kAllocate) {
if (!CreateImageProcessor())
return;
}
// Reserve all buffers until ImportBufferForPictureTask() is called
std::vector<V4L2WritableBufferRef> v4l2_buffers;
while (auto buffer_opt = output_queue_->GetFreeBuffer())
v4l2_buffers.push_back(std::move(*buffer_opt));
// Now setup the output record for each buffer and import it if needed.
for (auto&& buffer : v4l2_buffers) {
const int i = buffer.BufferId();
OutputRecord& output_record = output_buffer_map_[i];
DCHECK_EQ(output_record.picture_id, -1);
DCHECK(!output_record.cleared);
output_record.picture_id = buffers[i].id();
// We move the buffer into output_wait_map_, so get a reference to
// its video frame if we need it to create the native pixmap for import.
scoped_refptr<FrameResource> frame;
if (output_mode_ == Config::OutputMode::kAllocate &&
!image_processor_device_)
frame = buffer.GetFrameResource();
// The buffer will remain here until ImportBufferForPicture is called,
// either by the client, or by ourselves, if we are allocating.
DCHECK_EQ(output_wait_map_.count(buffers[i].id()), 0u);
output_wait_map_.emplace(buffers[i].id(), std::move(buffer));
if (output_mode_ == Config::OutputMode::kAllocate) {
gfx::NativePixmapHandle native_pixmap;
// If we are using an image processor, the DMABufs that we need to import
// are those of the image processor's buffers, not the decoders. So
// pass an empty native pixmap in that case.
if (!image_processor_device_) {
// TODO(nhebert): drop usage of CreateGpuMemoryBufferHandle(), which
// duplicates FD's, when a NativePixmap-based FrameResource is
// available.
native_pixmap =
frame->CreateGpuMemoryBufferHandle().native_pixmap_handle;
}
ImportBufferForPictureTask(output_record.picture_id,
std::move(native_pixmap));
} // else we'll get triggered via ImportBufferForPicture() from client.
DVLOGF(3) << "buffer[" << i << "]: picture_id=" << output_record.picture_id;
}
if (output_mode_ == Config::OutputMode::kAllocate) {
ScheduleDecodeBufferTaskIfNeeded();
}
}
void V4L2VideoDecodeAccelerator::ImportBufferForPicture(
int32_t picture_buffer_id,
VideoPixelFormat pixel_format,
gfx::GpuMemoryBufferHandle gpu_memory_buffer_handle) {
DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(child_task_runner_->BelongsToCurrentThread());
if (output_mode_ != Config::OutputMode::kImport) {
LOG(ERROR) << "Cannot import in non-import mode";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(
&V4L2VideoDecodeAccelerator::ImportBufferForPictureForImportTask,
base::Unretained(this), picture_buffer_id, pixel_format,
std::move(gpu_memory_buffer_handle.native_pixmap_handle)));
}
void V4L2VideoDecodeAccelerator::ImportBufferForPictureForImportTask(
int32_t picture_buffer_id,
VideoPixelFormat pixel_format,
gfx::NativePixmapHandle handle) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// |output_format_fourcc_| is the output format of the decoder. It is not
// the final output format from the image processor (if exists).
// Use |egl_image_format_fourcc_|, it will be the final output format.
if (pixel_format != egl_image_format_fourcc_->ToVideoPixelFormat()) {
LOG(ERROR) << "Unsupported import format: " << pixel_format << ", expected "
<< VideoPixelFormatToString(
egl_image_format_fourcc_->ToVideoPixelFormat());
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
for (const auto& plane : handle.planes) {
DVLOGF(3) << ": offset=" << plane.offset << ", stride=" << plane.stride;
}
ImportBufferForPictureTask(picture_buffer_id, std::move(handle));
}
void V4L2VideoDecodeAccelerator::ImportBufferForPictureTask(
int32_t picture_buffer_id,
gfx::NativePixmapHandle handle) {
DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id
<< ", handle.planes.size()=" << handle.planes.size();
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
TRACE_EVENT2("media,gpu", "V4L2VDA::ImportBufferForPictureTask",
"picture_buffer_id", picture_buffer_id, "handle.planes",
handle.planes.size());
if (IsDestroyPending())
return;
const auto iter = base::ranges::find(output_buffer_map_, picture_buffer_id,
&OutputRecord::picture_id);
if (iter == output_buffer_map_.end()) {
// It's possible that we've already posted a DismissPictureBuffer for this
// picture, but it has not yet executed when this ImportBufferForPicture was
// posted to us by the client. In that case just ignore this (we've already
// dismissed it and accounted for that).
DVLOGF(3) << "got picture id=" << picture_buffer_id
<< " not in use (anymore?).";
return;
}
if (!output_wait_map_.count(iter->picture_id)) {
LOG(ERROR) << "Passed buffer is not waiting to be imported";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
// TODO(crbug.com/41469754): ARC++ may adjust the size of the buffer due to
// allocator constraints, but the VDA API does not provide a way for it to
// communicate the actual buffer size. If we are importing, make sure that the
// actual buffer size is coherent with what we expect, and adjust our size if
// needed.
if (output_mode_ == Config::OutputMode::kImport) {
DCHECK_GT(handle.planes.size(), 0u);
const gfx::Size handle_size = v4l2_vda_helpers::NativePixmapSizeFromHandle(
handle, *egl_image_format_fourcc_, egl_image_size_);
// If this is the first picture, then adjust the EGL width.
// Otherwise just check that it remains the same.
if (decoder_state_ == kAwaitingPictureBuffers) {
DCHECK_GE(handle_size.width(), egl_image_size_.width());
DVLOGF(3) << "Original egl_image_size=" << egl_image_size_.ToString()
<< ", adjusted buffer size=" << handle_size.ToString();
egl_image_size_ = handle_size;
}
DCHECK_EQ(egl_image_size_, handle_size);
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
if (base::FeatureList::IsEnabled(media::kPreferSoftwareMT21) &&
!mt21_decompressor_) {
mt21_decompressor_ = std::make_unique<MT21Decompressor>(coded_size_);
}
#endif
// For allocate mode, the IP will already have been created in
// AssignPictureBuffersTask.
// Note: usage of the MT21 software decompressor disables the image
// processor.
if (image_processor_device_ && !image_processor_
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
&& !mt21_decompressor_
#endif
) {
DCHECK_EQ(kAwaitingPictureBuffers, decoder_state_);
// This is the first buffer import. Create the image processor and change
// the decoder state. The client may adjust the coded width. We don't have
// the final coded size in AssignPictureBuffers yet. Use the adjusted
// coded width to create the image processor.
if (!CreateImageProcessor())
return;
}
}
if (reset_pending_) {
FinishReset();
}
if (decoder_state_ == kAwaitingPictureBuffers) {
decoder_state_ = kDecoding;
DVLOGF(3) << "Change state to kDecoding";
}
// If we are importing, create the output FrameResource that we will render
// into.
if (output_mode_ == Config::OutputMode::kImport) {
DCHECK_GT(handle.planes.size(), 0u);
DCHECK(!iter->output_frame);
// Duplicate the buffer FDs for the output frame.
std::vector<base::ScopedFD> duped_fds;
std::vector<ColorPlaneLayout> color_planes;
for (const gfx::NativePixmapPlane& plane : handle.planes) {
duped_fds.emplace_back(HANDLE_EINTR(dup(plane.fd.get())));
if (!duped_fds.back().is_valid()) {
PLOG(ERROR) << "Failed to duplicate plane FD!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
color_planes.push_back(
ColorPlaneLayout(base::checked_cast<int32_t>(plane.stride),
base::checked_cast<size_t>(plane.offset),
base::checked_cast<size_t>(plane.size)));
}
auto layout = VideoFrameLayout::CreateWithPlanes(
egl_image_format_fourcc_->ToVideoPixelFormat(), egl_image_size_,
std::move(color_planes));
if (!layout) {
LOG(ERROR) << "Cannot create layout!";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
iter->output_frame = NativePixmapFrameResource::Create(
*layout, gfx::Rect(visible_size_), visible_size_, std::move(duped_fds),
base::TimeDelta());
}
// The buffer can now be used for decoding
DCHECK_EQ(output_wait_map_.count(picture_buffer_id), 1u);
output_wait_map_.erase(picture_buffer_id);
if (decoder_state_ != kChangingResolution) {
Enqueue();
ScheduleDecodeBufferTaskIfNeeded();
}
}
void V4L2VideoDecodeAccelerator::ReusePictureBuffer(int32_t picture_buffer_id) {
DVLOGF(4) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoDecodeAccelerator::ReusePictureBufferTask,
base::Unretained(this), picture_buffer_id));
}
void V4L2VideoDecodeAccelerator::Flush() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::FlushTask,
base::Unretained(this)));
}
void V4L2VideoDecodeAccelerator::Reset() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::ResetTask,
base::Unretained(this)));
}
void V4L2VideoDecodeAccelerator::Destroy() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
// Signal any waiting/sleeping tasks to early exit as soon as possible to
// avoid waiting too long for the decoder_thread_ to Stop().
destroy_pending_.Signal();
// We're destroying; cancel all callbacks.
client_ptr_factory_.reset();
weak_this_factory_.InvalidateWeakPtrs();
// If the decoder thread is running, destroy using posted task.
if (decoder_thread_.IsRunning()) {
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::DestroyTask,
base::Unretained(this)));
// DestroyTask() will cause the decoder_thread_ to flush all tasks.
decoder_thread_.Stop();
}
delete this;
VLOGF(2) << "Destroyed.";
}
bool V4L2VideoDecodeAccelerator::TryToSetupDecodeOnSeparateSequence(
const base::WeakPtr<Client>& decode_client,
const scoped_refptr<base::SequencedTaskRunner>& decode_task_runner) {
VLOGF(2);
decode_client_ = decode_client;
decode_task_runner_ = decode_task_runner;
return true;
}
// static
VideoDecodeAccelerator::SupportedProfiles
V4L2VideoDecodeAccelerator::GetSupportedProfiles() {
auto device = base::MakeRefCounted<V4L2Device>();
return device->GetSupportedDecodeProfiles(kSupportedInputFourCCs);
}
void V4L2VideoDecodeAccelerator::DecodeTask(scoped_refptr<DecoderBuffer> buffer,
int32_t bitstream_id) {
DVLOGF(4) << "input_id=" << bitstream_id;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
if (IsDestroyPending())
return;
if (IsVp9KSVCStream(input_format_fourcc_, *buffer)) {
LOG(ERROR) << "VDA does not support decoding VP9 k-SVC stream";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
std::unique_ptr<BitstreamBufferRef> bitstream_record(new BitstreamBufferRef(
decode_client_, decode_task_runner_, std::move(buffer), bitstream_id));
// Skip empty buffer.
if (!bitstream_record->buffer)
return;
if (decoder_state_ == kResetting || decoder_flushing_) {
// In the case that we're resetting or flushing, we need to delay decoding
// the BitstreamBuffers that come after the Reset() or Flush() call. When
// we're here, we know that this DecodeTask() was scheduled by a Decode()
// call that came after (in the client thread) the Reset() or Flush() call;
// thus set up the delay if necessary.
if (decoder_delay_bitstream_buffer_id_ == -1)
decoder_delay_bitstream_buffer_id_ = bitstream_record->input_id;
} else if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
decoder_input_queue_.push_back(std::move(bitstream_record));
decoder_decode_buffer_tasks_scheduled_++;
DecodeBufferTask();
}
void V4L2VideoDecodeAccelerator::DecodeBufferTask() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
TRACE_EVENT0("media,gpu", "V4L2VDA::DecodeBufferTask");
if (IsDestroyPending())
return;
decoder_decode_buffer_tasks_scheduled_--;
if (decoder_state_ != kInitialized && decoder_state_ != kDecoding) {
DVLOGF(3) << "early out: state=" << decoder_state_;
return;
}
if (decoder_current_bitstream_buffer_ == NULL) {
if (decoder_input_queue_.empty()) {
// We're waiting for a new buffer -- exit without scheduling a new task.
return;
}
if (decoder_delay_bitstream_buffer_id_ ==
decoder_input_queue_.front()->input_id) {
// We're asked to delay decoding on this and subsequent buffers.
return;
}
// Setup to use the next buffer.
decoder_current_bitstream_buffer_ = std::move(decoder_input_queue_.front());
decoder_input_queue_.pop_front();
const auto& buffer = decoder_current_bitstream_buffer_->buffer;
if (buffer) {
DVLOGF(4) << "reading input_id="
<< decoder_current_bitstream_buffer_->input_id
<< ", addr=" << buffer->data() << ", size=" << buffer->size();
} else {
DCHECK_EQ(decoder_current_bitstream_buffer_->input_id, kFlushBufferId);
DVLOGF(4) << "reading input_id=kFlushBufferId";
}
}
bool schedule_task = false;
size_t decoded_size = 0;
const auto& buffer = decoder_current_bitstream_buffer_->buffer;
if (!buffer) {
// This is a dummy buffer, queued to flush the pipe. Flush.
DCHECK_EQ(decoder_current_bitstream_buffer_->input_id, kFlushBufferId);
// Enqueue a buffer guaranteed to be empty. To do that, we flush the
// current input, enqueue no data to the next frame, then flush that down.
schedule_task = true;
if (current_input_buffer_ &&
current_input_buffer_->GetTimeStamp().tv_sec != kFlushBufferId)
schedule_task = FlushInputFrame();
if (schedule_task && AppendToInputFrame(NULL, 0) && FlushInputFrame()) {
VLOGF(2) << "enqueued flush buffer";
schedule_task = true;
} else {
// If we failed to enqueue the empty buffer (due to pipeline
// backpressure), don't advance the bitstream buffer queue, and don't
// schedule the next task. This bitstream buffer queue entry will get
// reprocessed when the pipeline frees up.
schedule_task = false;
}
} else if (buffer->empty()) {
// This is a buffer queued from the client that has zero size. Skip.
// TODO(sandersd): This shouldn't be possible, empty buffers are never
// enqueued.
schedule_task = true;
} else {
// This is a buffer queued from the client, with actual contents. Decode.
const uint8_t* const data =
buffer->data() + decoder_current_bitstream_buffer_->bytes_used;
const size_t data_size =
buffer->size() - decoder_current_bitstream_buffer_->bytes_used;
if (!frame_splitter_->AdvanceFrameFragment(data, data_size,
&decoded_size)) {
LOG(ERROR) << "Invalid Stream";
NOTIFY_ERROR(UNREADABLE_INPUT);
return;
}
// AdvanceFrameFragment should not return a size larger than the buffer
// size, even on invalid data.
CHECK_LE(decoded_size, data_size);
switch (decoder_state_) {
case kInitialized:
schedule_task = DecodeBufferInitial(data, decoded_size, &decoded_size);
break;
case kDecoding:
schedule_task = DecodeBufferContinue(data, decoded_size);
break;
default:
LOG(ERROR) << "Illegal State";
NOTIFY_ERROR(ILLEGAL_STATE);
return;
}
}
if (decoder_state_ == kError) {
// Failed during decode.
return;
}
if (schedule_task) {
decoder_current_bitstream_buffer_->bytes_used += decoded_size;
if ((buffer ? buffer->size() : 0) ==
decoder_current_bitstream_buffer_->bytes_used) {
// Our current bitstream buffer is done; return it.
int32_t input_id = decoder_current_bitstream_buffer_->input_id;
DVLOGF(4) << "finished input_id=" << input_id;
// BitstreamBufferRef destructor calls NotifyEndOfBitstreamBuffer().
decoder_current_bitstream_buffer_.reset();
}
ScheduleDecodeBufferTaskIfNeeded();
}
}
void V4L2VideoDecodeAccelerator::ScheduleDecodeBufferTaskIfNeeded() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// If we're behind on tasks, schedule another one.
int buffers_to_decode = decoder_input_queue_.size();
if (decoder_current_bitstream_buffer_ != NULL)
buffers_to_decode++;
if (decoder_decode_buffer_tasks_scheduled_ < buffers_to_decode) {
decoder_decode_buffer_tasks_scheduled_++;
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::DecodeBufferTask,
base::Unretained(this)));
}
}
bool V4L2VideoDecodeAccelerator::DecodeBufferInitial(const void* data,
size_t size,
size_t* endpos) {
DVLOGF(3) << "data=" << data << ", size=" << size;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kInitialized);
// Initial decode. We haven't been able to get output stream format info yet.
// Get it, and start decoding.
// Copy in and send to HW.
if (!AppendToInputFrame(data, size))
return false;
// If we only have a partial frame, don't flush and process yet.
if (frame_splitter_->IsPartialFramePending())
return true;
if (!FlushInputFrame())
return false;
// Recycle buffers.
Dequeue();
*endpos = size;
// If an initial resolution change event is not done yet, a driver probably
// needs more stream to decode format.
// Return true and schedule next buffer without changing status to kDecoding.
// If the initial resolution change is done and coded size is known, we may
// still have to wait for AssignPictureBuffers() and output buffers to be
// allocated.
if (coded_size_.IsEmpty() || output_buffer_map_.empty()) {
return true;
}
decoder_state_ = kDecoding;
ScheduleDecodeBufferTaskIfNeeded();
return true;
}
bool V4L2VideoDecodeAccelerator::DecodeBufferContinue(const void* data,
size_t size) {
DVLOGF(4) << "data=" << data << ", size=" << size;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kDecoding);
// Both of these calls will set kError state if they fail.
// Only flush the frame if it's complete.
return (AppendToInputFrame(data, size) &&
(frame_splitter_->IsPartialFramePending() || FlushInputFrame()));
}
bool V4L2VideoDecodeAccelerator::AppendToInputFrame(const void* data,
size_t size) {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DCHECK_NE(decoder_state_, kResetting);
DCHECK_NE(decoder_state_, kError);
// This routine can handle data == NULL and size == 0, which occurs when
// we queue an empty buffer for the purposes of flushing the pipe.
// Flush if we're too big
if (current_input_buffer_) {
size_t plane_size = current_input_buffer_->GetPlaneSize(0);
size_t bytes_used = current_input_buffer_->GetPlaneBytesUsed(0);
if (bytes_used + size > plane_size) {
if (!FlushInputFrame())
return false;
}
}
// Try to get an available input buffer.
if (!current_input_buffer_) {
DCHECK(decoder_current_bitstream_buffer_ != NULL);
DCHECK(input_queue_);
// See if we can get more free buffers from HW.
if (input_queue_->FreeBuffersCount() == 0)
Dequeue();
current_input_buffer_ = input_queue_->GetFreeBuffer();
if (!current_input_buffer_) {
// No buffer available yet.
DVLOGF(4) << "stalled for input buffers";
return false;
}
struct timeval timestamp = {
.tv_sec = decoder_current_bitstream_buffer_->input_id};
current_input_buffer_->SetTimeStamp(timestamp);
}
DCHECK(data != NULL || size == 0);
if (size == 0) {
// If we asked for an empty buffer, return now. We return only after
// getting the next input buffer, since we might actually want an empty
// input buffer for flushing purposes.
return true;
}
// Copy in to the buffer.
size_t plane_size = current_input_buffer_->GetPlaneSize(0);
size_t bytes_used = current_input_buffer_->GetPlaneBytesUsed(0);
if (size > plane_size - bytes_used) {
LOG(ERROR) << "over-size frame, erroring";
NOTIFY_ERROR(UNREADABLE_INPUT);
return false;
}
void* mapping = current_input_buffer_->GetPlaneMapping(0);
memcpy(reinterpret_cast<uint8_t*>(mapping) + bytes_used, data, size);
current_input_buffer_->SetPlaneBytesUsed(0, bytes_used + size);
return true;
}
bool V4L2VideoDecodeAccelerator::FlushInputFrame() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DCHECK_NE(decoder_state_, kResetting);
DCHECK_NE(decoder_state_, kError);
if (!current_input_buffer_)
return true;
const int32_t input_buffer_id = current_input_buffer_->GetTimeStamp().tv_sec;
DCHECK(input_buffer_id != kFlushBufferId ||
current_input_buffer_->GetPlaneBytesUsed(0) == 0);
// * if input_id >= 0, this input buffer was prompted by a bitstream buffer we
// got from the client. We can skip it if it is empty.
// * if input_id < 0 (should be kFlushBufferId in this case), this input
// buffer was prompted by a flush buffer, and should be queued even when
// empty.
if (input_buffer_id >= 0 &&
current_input_buffer_->GetPlaneBytesUsed(0) == 0) {
current_input_buffer_.reset();
return true;
}
// Queue it.
DVLOGF(4) << "submitting input_id=" << input_buffer_id;
input_ready_queue_.push(std::move(*current_input_buffer_));
current_input_buffer_.reset();
// Enqueue once since there's new available input for it.
Enqueue();
TRACE_COUNTER_ID1("media,gpu", "V4L2VDA input ready buffers", this,
input_ready_queue_.size());
return (decoder_state_ != kError);
}
void V4L2VideoDecodeAccelerator::ServiceDeviceTask(bool event_pending) {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
TRACE_EVENT0("media,gpu", "V4L2VDA::ServiceDeviceTask");
if (IsDestroyPending())
return;
DCHECK(input_queue_);
DCHECK(output_queue_);
if (decoder_state_ == kResetting) {
DVLOGF(3) << "early out: kResetting state";
return;
} else if (decoder_state_ == kError) {
DVLOGF(3) << "early out: kError state";
return;
} else if (decoder_state_ == kChangingResolution) {
DVLOGF(3) << "early out: kChangingResolution state";
return;
}
bool resolution_change_pending = false;
if (event_pending)
resolution_change_pending = DequeueResolutionChangeEvent();
if (!resolution_change_pending && coded_size_.IsEmpty()) {
// Some platforms do not send an initial resolution change event.
// To work around this, we need to keep checking if the initial resolution
// is known already by explicitly querying the format after each decode,
// regardless of whether we received an event.
// This needs to be done on initial resolution change,
// i.e. when coded_size_.IsEmpty().
// Try GetFormatInfo to check if an initial resolution change can be done.
struct v4l2_format format;
gfx::Size visible_size;
bool again;
if (GetFormatInfo(&format, &visible_size, &again) && !again) {
resolution_change_pending = true;
DequeueResolutionChangeEvent();
}
}
Dequeue();
Enqueue();
// Clear the interrupt fd.
if (!device_->ClearDevicePollInterrupt()) {
LOG(ERROR) << "Failed Clear the interrupt fd";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
bool poll_device = false;
// Add fd, if we should poll on it.
// Can be polled as soon as either input or output buffers are queued.
if (input_queue_->QueuedBuffersCount() + output_queue_->QueuedBuffersCount() >
0)
poll_device = true;
// ServiceDeviceTask() should only ever be scheduled from DevicePollTask(),
// so either:
// * device_poll_thread_ is running normally
// * device_poll_thread_ scheduled us, but then a ResetTask() or DestroyTask()
// shut it down, in which case we're either in kResetting or kError states
// respectively, and we should have early-outed already.
DCHECK(device_poll_thread_.task_runner());
// Queue the DevicePollTask() now.
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::DevicePollTask,
base::Unretained(this), poll_device));
DVLOGF(3) << "ServiceDeviceTask(): buffer counts: DEC["
<< decoder_input_queue_.size() << "->" << input_ready_queue_.size()
<< "] => DEVICE[" << input_queue_->FreeBuffersCount() << "+"
<< input_queue_->QueuedBuffersCount() << "/"
<< input_queue_->AllocatedBuffersCount() << "->"
<< output_queue_->FreeBuffersCount() << "+"
<< output_queue_->QueuedBuffersCount() << "/"
<< output_buffer_map_.size() << "] => PROCESSOR["
<< buffers_at_ip_.size() << "] => CLIENT["
<< buffers_at_client_.size() << "]";
ScheduleDecodeBufferTaskIfNeeded();
if (resolution_change_pending)
StartResolutionChange();
}
void V4L2VideoDecodeAccelerator::Enqueue() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
if (IsDestroyPending()) {
return;
}
// There's no reason why this class should attempt to enqueue buffers while
// it's in the process of a resolution change.
CHECK_NE(decoder_state_, kChangingResolution);
DCHECK(input_queue_);
DCHECK(output_queue_);
// Drain the pipe of completed decode buffers.
const int old_inputs_queued = input_queue_->QueuedBuffersCount();
while (!input_ready_queue_.empty()) {
bool flush_handled = false;
int32_t input_id = input_ready_queue_.front().GetTimeStamp().tv_sec;
if (input_id == kFlushBufferId) {
// Send the flush command after all input buffers are dequeued. This makes
// sure all previous resolution changes have been handled because the
// driver must hold the input buffer that triggers resolution change. The
// driver cannot decode data in it without new output buffers. If we send
// the flush now and a queued input buffer triggers resolution change
// later, the driver will send an output buffer that has
// V4L2_BUF_FLAG_LAST. But some queued input buffer have not been decoded
// yet. Also, V4L2VDA calls STREAMOFF and STREAMON after resolution
// change. They implicitly send a V4L2_DEC_CMD_STOP and V4L2_DEC_CMD_START
// to the decoder.
if (input_queue_->QueuedBuffersCount() > 0)
break;
if (coded_size_.IsEmpty() || !input_queue_->IsStreaming()) {
// In these situations, we should call NotifyFlushDone() immediately:
// (1) If coded_size_.IsEmpty(), no output buffer could have been
// allocated and there is nothing to flush.
// (2) If input stream is off, we will never get the output buffer
// with V4L2_BUF_FLAG_LAST.
VLOGF(2) << "Nothing to flush. Notify flush done directly.";
NotifyFlushDone();
flush_handled = true;
} else if (decoder_cmd_supported_) {
if (!SendDecoderCmdStop())
return;
flush_handled = true;
}
}
if (flush_handled) {
// Recycle the buffer directly if we already handled the flush request.
input_ready_queue_.pop();
} else {
// Enqueue an input buffer, or an empty flush buffer if decoder cmd
// is not supported and there may be buffers to be flushed.
auto buffer = std::move(input_ready_queue_.front());
input_ready_queue_.pop();
if (!EnqueueInputRecord(std::move(buffer)))
return;
}
}
if (old_inputs_queued == 0 && input_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt()) {
PLOG(ERROR) << "SetDevicePollInterrupt failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
// Start VIDIOC_STREAMON if we haven't yet.
if (!input_queue_->Streamon()) {
LOG(ERROR) << "Failed Stream on input queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
// OUTPUT queue must be started before CAPTURE queue as per codec API.
if (!input_queue_->IsStreaming())
return;
// Enqueue all the outputs we can.
const int old_outputs_queued = output_queue_->QueuedBuffersCount();
while (auto buffer_opt = output_queue_->GetFreeBuffer()) {
if (!EnqueueOutputRecord(std::move(*buffer_opt)))
return;
}
if (old_outputs_queued == 0 && output_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt()) {
PLOG(ERROR) << "SetDevicePollInterrupt(): failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (!output_queue_->Streamon()) {
PLOG(ERROR) << "Failed Stream on output queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
}
bool V4L2VideoDecodeAccelerator::DequeueResolutionChangeEvent() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DVLOGF(3);
while (std::optional<struct v4l2_event> event = device_->DequeueEvent()) {
if (event->type == V4L2_EVENT_SOURCE_CHANGE) {
if (event->u.src_change.changes & V4L2_EVENT_SRC_CH_RESOLUTION) {
VLOGF(2) << "got resolution change event.";
return true;
}
} else {
VLOGF(1) << "got an event (" << event->type
<< ") we haven't subscribed to.";
}
}
return false;
}
void V4L2VideoDecodeAccelerator::Dequeue() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DCHECK(input_queue_);
DCHECK(output_queue_);
while (input_queue_->QueuedBuffersCount() > 0) {
if (!DequeueInputBuffer())
break;
}
while (output_queue_->QueuedBuffersCount() > 0) {
if (!DequeueOutputBuffer())
break;
}
NotifyFlushDoneIfNeeded();
}
bool V4L2VideoDecodeAccelerator::DequeueInputBuffer() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(input_queue_);
DCHECK_GT(input_queue_->QueuedBuffersCount(), 0u);
// Dequeue a completed input (VIDEO_OUTPUT) buffer, and recycle to the free
// list.
auto ret = input_queue_->DequeueBuffer();
if (ret.first == false) {
LOG(ERROR) << "Error in Dequeue input buffer";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
} else if (!ret.second) {
// we're just out of buffers to dequeue.
return false;
}
return true;
}
bool V4L2VideoDecodeAccelerator::DequeueOutputBuffer() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(output_queue_);
DCHECK_GT(output_queue_->QueuedBuffersCount(), 0u);
DCHECK(output_queue_->IsStreaming());
// Dequeue a completed output (VIDEO_CAPTURE) buffer, and queue to the
// completed queue.
auto ret = output_queue_->DequeueBuffer();
if (ret.first == false) {
LOG(ERROR) << "Error in Dequeue output buffer";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
if (!ret.second) {
return false;
}
V4L2ReadableBufferRef buf(std::move(ret.second));
DCHECK_LT(buf->BufferId(), output_buffer_map_.size());
OutputRecord& output_record = output_buffer_map_[buf->BufferId()];
DCHECK_NE(output_record.picture_id, -1);
// Zero-bytes buffers are returned as part of a flush and can be dismissed.
if (buf->GetPlaneBytesUsed(0) > 0) {
int32_t bitstream_buffer_id = buf->GetTimeStamp().tv_sec;
DCHECK_GE(bitstream_buffer_id, 0);
DVLOGF(4) << "Dequeue output buffer: dqbuf index=" << buf->BufferId()
<< " bitstream input_id=" << bitstream_buffer_id;
if (image_processor_device_
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
|| mt21_decompressor_
#endif
) {
if (!ProcessFrame(bitstream_buffer_id, buf)) {
LOG(ERROR) << "Processing frame failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
} else {
SendBufferToClient(buf->BufferId(), bitstream_buffer_id, buf);
}
}
if (buf->IsLast()) {
DVLOGF(3) << "Got last output buffer. Waiting last buffer="
<< flush_awaiting_last_output_buffer_;
if (flush_awaiting_last_output_buffer_) {
flush_awaiting_last_output_buffer_ = false;
struct v4l2_decoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_DEC_CMD_START;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_DECODER_CMD, &cmd);
}
}
return true;
}
bool V4L2VideoDecodeAccelerator::EnqueueInputRecord(
V4L2WritableBufferRef buffer) {
DVLOGF(4);
// Enqueue an input (VIDEO_OUTPUT) buffer.
int32_t input_id = buffer.GetTimeStamp().tv_sec;
size_t bytes_used = buffer.GetPlaneBytesUsed(0);
if (!std::move(buffer).QueueMMap()) {
LOG(ERROR) << "Error in Queue input buffer";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
DVLOGF(4) << "enqueued input_id=" << input_id << " size=" << bytes_used;
return true;
}
bool V4L2VideoDecodeAccelerator::EnqueueOutputRecord(
V4L2WritableBufferRef buffer) {
OutputRecord& output_record = output_buffer_map_[buffer.BufferId()];
DCHECK_NE(output_record.picture_id, -1);
bool ret = false;
switch (buffer.Memory()) {
case V4L2_MEMORY_MMAP:
ret = std::move(buffer).QueueMMap();
break;
case V4L2_MEMORY_DMABUF:
ret = std::move(buffer).QueueDMABuf(output_record.output_frame);
break;
default:
NOTREACHED();
}
if (!ret) {
LOG(ERROR) << "Error in Dequeue output buffer";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
return true;
}
void V4L2VideoDecodeAccelerator::ReusePictureBufferTask(
int32_t picture_buffer_id) {
DVLOGF(4) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
// We run ReusePictureBufferTask even if we're in kResetting.
if (decoder_state_ == kError) {
DVLOGF(4) << "early out: kError state";
return;
}
if (decoder_state_ == kChangingResolution) {
DVLOGF(4) << "early out: kChangingResolution";
return;
}
auto iter = buffers_at_client_.find(picture_buffer_id);
if (iter == buffers_at_client_.end()) {
// It's possible that we've already posted a DismissPictureBuffer for this
// picture, but it has not yet executed when this ReusePictureBuffer was
// posted to us by the client. In that case just ignore this (we've already
// dismissed it and accounted for that).
DVLOGF(3) << "got picture id= " << picture_buffer_id
<< " not in use (anymore?).";
return;
}
buffers_at_client_.erase(iter);
// We got a buffer back, so enqueue it back.
Enqueue();
TRACE_COUNTER_ID2(
"media,gpu", "V4L2 output buffers", this, "in client",
buffers_at_client_.size(), "in vda",
output_buffer_map_.size() - buffers_at_client_.size());
TRACE_COUNTER_ID2(
"media,gpu", "V4L2 output buffers in vda", this, "free",
output_queue_->FreeBuffersCount(), "in device or IP",
output_queue_->QueuedBuffersCount() + buffers_at_ip_.size());
}
void V4L2VideoDecodeAccelerator::FlushTask() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media,gpu", "V4L2VDA::FlushTask",
TRACE_ID_LOCAL(this));
// We don't support stacked flushing.
DCHECK(!decoder_flushing_);
// Queue up an empty buffer -- this triggers the flush.
decoder_input_queue_.push_back(std::make_unique<BitstreamBufferRef>(
decode_client_, decode_task_runner_, nullptr, kFlushBufferId));
decoder_flushing_ = true;
SendPictureReady(); // Send all pending PictureReady.
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2VideoDecodeAccelerator::NotifyFlushDoneIfNeeded() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(input_queue_);
if (!decoder_flushing_)
return;
// Pipeline is empty when:
// * Decoder input queue is empty of non-delayed buffers.
// * There is no currently filling input buffer.
// * Input holding queue is empty.
// * All input (VIDEO_OUTPUT) buffers are returned.
// * All image processor buffers are returned.
if (!decoder_input_queue_.empty()) {
if (decoder_input_queue_.front()->input_id !=
decoder_delay_bitstream_buffer_id_) {
DVLOGF(3) << "Some input bitstream buffers are not queued.";
return;
}
}
if (current_input_buffer_) {
DVLOGF(3) << "Current input buffer != -1";
return;
}
if ((input_ready_queue_.size() + input_queue_->QueuedBuffersCount()) != 0) {
DVLOGF(3) << "Some input buffers are not dequeued.";
return;
}
if (!buffers_at_ip_.empty()) {
DVLOGF(3) << "Waiting for image processor to complete.";
return;
}
if (flush_awaiting_last_output_buffer_) {
DVLOGF(3) << "Waiting for last output buffer.";
return;
}
// TODO(posciak): https://crbug.com/270039. Exynos requires a
// streamoff-streamon sequence after flush to continue, even if we are not
// resetting. This would make sense, because we don't really want to resume
// from a non-resume point (e.g. not from an IDR) if we are flushed.
// MSE player however triggers a Flush() on chunk end, but never Reset(). One
// could argue either way, or even say that Flush() is not needed/harmful when
// transitioning to next chunk.
// For now, do the streamoff-streamon cycle to satisfy Exynos and not freeze
// when doing MSE. This should be harmless otherwise.
if (!(StopDevicePoll() && StopOutputStream() && StopInputStream()))
return;
if (!StartDevicePoll())
return;
NotifyFlushDone();
// While we were flushing, we early-outed DecodeBufferTask()s.
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2VideoDecodeAccelerator::NotifyFlushDone() {
TRACE_EVENT_NESTABLE_ASYNC_END0("media,gpu", "V4L2VDA::FlushTask",
TRACE_ID_LOCAL(this));
decoder_delay_bitstream_buffer_id_ = -1;
decoder_flushing_ = false;
VLOGF(2) << "returning flush";
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::NotifyFlushDone, client_));
}
bool V4L2VideoDecodeAccelerator::IsDecoderCmdSupported() {
// CMD_STOP should always succeed. If the decoder is started, the command can
// flush it. If the decoder is stopped, the command does nothing. We use this
// to know if a driver supports V4L2_DEC_CMD_STOP to flush.
struct v4l2_decoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_DEC_CMD_STOP;
if (device_->Ioctl(VIDIOC_TRY_DECODER_CMD, &cmd) != 0) {
VLOGF(2) "V4L2_DEC_CMD_STOP is not supported.";
return false;
}
return true;
}
bool V4L2VideoDecodeAccelerator::SendDecoderCmdStop() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!flush_awaiting_last_output_buffer_);
struct v4l2_decoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_DEC_CMD_STOP;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_DECODER_CMD, &cmd);
flush_awaiting_last_output_buffer_ = true;
return true;
}
void V4L2VideoDecodeAccelerator::ResetTask() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media,gpu", "V4L2VDA::ResetTask",
TRACE_ID_LOCAL(this));
decoder_current_bitstream_buffer_.reset();
while (!decoder_input_queue_.empty())
decoder_input_queue_.pop_front();
current_input_buffer_.reset();
// If we are in the middle of switching resolutions or awaiting picture
// buffers, postpone reset until it's done. We don't have to worry about
// timing of this wrt to decoding, because output pipe is already
// stopped if we are changing resolution. We will come back here after
// we are done.
DCHECK(!reset_pending_);
if (decoder_state_ == kChangingResolution ||
decoder_state_ == kAwaitingPictureBuffers) {
reset_pending_ = true;
return;
}
FinishReset();
}
void V4L2VideoDecodeAccelerator::FinishReset() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
reset_pending_ = false;
// After the output stream is stopped, the codec should not post any
// resolution change events. So we dequeue the resolution change event
// afterwards. The event could be posted before or while stopping the output
// stream. The codec will expect the buffer of new size after the seek, so
// we need to handle the resolution change event first.
if (!(StopDevicePoll() && StopOutputStream()))
return;
if (DequeueResolutionChangeEvent()) {
reset_pending_ = true;
StartResolutionChange();
return;
}
if (!StopInputStream())
return;
// Drop all buffers in image processor.
if (image_processor_ && !ResetImageProcessor()) {
LOG(ERROR) << "Fail to reset image processor";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
// If we were flushing, we'll never return any more BitstreamBuffers or
// PictureBuffers; they have all been dropped and returned by now.
NotifyFlushDoneIfNeeded();
// Mark that we're resetting, then enqueue a ResetDoneTask(). All intervening
// jobs will early-out in the kResetting state.
decoder_state_ = kResetting;
SendPictureReady(); // Send all pending PictureReady.
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::ResetDoneTask,
base::Unretained(this)));
}
void V4L2VideoDecodeAccelerator::ResetDoneTask() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
TRACE_EVENT_NESTABLE_ASYNC_END0("media,gpu", "V4L2VDA::ResetTask",
TRACE_ID_LOCAL(this));
// Start poll thread if NotifyFlushDoneIfNeeded has not already.
if (!device_poll_thread_.IsRunning()) {
if (!StartDevicePoll())
return;
}
frame_splitter_->Reset();
// Jobs drained, we're finished resetting.
DCHECK_EQ(decoder_state_, kResetting);
decoder_state_ = kInitialized;
decoder_delay_bitstream_buffer_id_ = -1;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::NotifyResetDone, client_));
// While we were resetting, we early-outed DecodeBufferTask()s.
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2VideoDecodeAccelerator::DestroyTask() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
TRACE_EVENT0("media,gpu", "V4L2VDA::DestroyTask");
// DestroyTask() should run regardless of decoder_state_.
decoder_state_ = kDestroying;
StopDevicePoll();
StopOutputStream();
StopInputStream();
decoder_current_bitstream_buffer_.reset();
current_input_buffer_.reset();
decoder_decode_buffer_tasks_scheduled_ = 0;
while (!decoder_input_queue_.empty())
decoder_input_queue_.pop_front();
decoder_flushing_ = false;
// First liberate all the frames held by the client.
buffers_at_client_.clear();
// The image processor's thread was the user of the image processor device,
// so let it keep the last reference and destroy it in its own thread.
image_processor_device_ = nullptr;
image_processor_ = nullptr;
while (!buffers_at_ip_.empty())
buffers_at_ip_.pop();
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
mt21_decompressor_ = nullptr;
#endif
DestroyInputBuffers();
DestroyOutputBuffers();
input_queue_ = nullptr;
output_queue_ = nullptr;
frame_splitter_ = nullptr;
// Clear the V4L2 devices in the decoder thread so the V4L2Device's
// destructor is called from the thread that used it.
device_ = nullptr;
base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
this);
}
bool V4L2VideoDecodeAccelerator::StartDevicePoll() {
DVLOGF(3);
DCHECK(!device_poll_thread_.IsRunning());
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// Start up the device poll thread and schedule its first DevicePollTask().
if (!device_poll_thread_.Start()) {
LOG(ERROR) << "Device thread failed to start";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
cancelable_service_device_task_.Reset(base::BindRepeating(
&V4L2VideoDecodeAccelerator::ServiceDeviceTask, base::Unretained(this)));
cancelable_service_device_task_callback_ =
cancelable_service_device_task_.callback();
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::DevicePollTask,
base::Unretained(this), 0));
return true;
}
bool V4L2VideoDecodeAccelerator::StopDevicePoll() {
DVLOGF(3);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!device_poll_thread_.IsRunning())
return true;
// Signal the DevicePollTask() to stop, and stop the device poll thread.
if (!device_->SetDevicePollInterrupt()) {
PLOG(ERROR) << "SetDevicePollInterrupt(): failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
device_poll_thread_.Stop();
// Must be done after the Stop() above to ensure
// |cancelable_service_device_task_callback_| is not copied.
cancelable_service_device_task_.Cancel();
cancelable_service_device_task_callback_ = base::NullCallback();
// Clear the interrupt now, to be sure.
if (!device_->ClearDevicePollInterrupt()) {
PLOG(ERROR) << "ClearDevicePollInterrupt: failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
DVLOGF(3) << "device poll stopped";
return true;
}
bool V4L2VideoDecodeAccelerator::StopOutputStream() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!output_queue_ || !output_queue_->IsStreaming())
return true;
if (!output_queue_->Streamoff()) {
VLOGF(1) << "Failed streaming off output queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
// Output stream is stopped. No need to wait for the buffer anymore.
flush_awaiting_last_output_buffer_ = false;
return true;
}
bool V4L2VideoDecodeAccelerator::StopInputStream() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!input_queue_ || !input_queue_->IsStreaming())
return true;
if (!input_queue_->Streamoff()) {
LOG(ERROR) << "Failed streaming off input queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
// Reset accounting info for input.
while (!input_ready_queue_.empty())
input_ready_queue_.pop();
return true;
}
void V4L2VideoDecodeAccelerator::StartResolutionChange() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DCHECK_NE(decoder_state_, kResetting);
VLOGF(2) << "Initiate resolution change";
if (!(StopDevicePoll() && StopOutputStream()))
return;
decoder_state_ = kChangingResolution;
SendPictureReady(); // Send all pending PictureReady.
if (!buffers_at_ip_.empty()) {
VLOGF(2) << "Wait image processor to finish before destroying buffers.";
return;
}
buffers_at_client_.clear();
image_processor_ = nullptr;
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
mt21_decompressor_ = nullptr;
#endif
if (!DestroyOutputBuffers()) {
LOG(ERROR) << "Failed destroying output buffers.";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
FinishResolutionChange();
}
void V4L2VideoDecodeAccelerator::FinishResolutionChange() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kChangingResolution);
VLOGF(2);
if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
struct v4l2_format format;
bool again;
gfx::Size visible_size;
bool ret = GetFormatInfo(&format, &visible_size, &again);
if (!ret || again) {
LOG(ERROR) << "Couldn't get format information after resolution change";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (!CreateBuffersForFormat(format, visible_size)) {
LOG(ERROR) << "Couldn't reallocate buffers after resolution change";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (!StartDevicePoll())
return;
}
void V4L2VideoDecodeAccelerator::DevicePollTask(bool poll_device) {
DVLOGF(4);
DCHECK(device_poll_thread_.task_runner()->BelongsToCurrentThread());
TRACE_EVENT0("media,gpu", "V4L2VDA::DevicePollTask");
bool event_pending = false;
if (!device_->Poll(poll_device, &event_pending)) {
LOG(ERROR) << "Failed during poll";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
// All processing should happen on ServiceDeviceTask(), since we shouldn't
// touch decoder state from this thread.
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(cancelable_service_device_task_callback_, event_pending));
}
bool V4L2VideoDecodeAccelerator::IsDestroyPending() {
return destroy_pending_.IsSignaled();
}
void V4L2VideoDecodeAccelerator::NotifyError(Error error) {
VLOGF(1);
// Notifying the client should only happen from the client's thread.
if (!child_task_runner_->BelongsToCurrentThread()) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::NotifyError,
weak_this_, error));
return;
}
// Notify the decoder's client an error has occurred.
if (client_) {
client_->NotifyError(error);
client_ptr_factory_.reset();
}
}
void V4L2VideoDecodeAccelerator::SetErrorState(Error error) {
// We can touch decoder_state_ only if this is the decoder thread or the
// decoder thread isn't running.
if (decoder_thread_.task_runner() &&
!decoder_thread_.task_runner()->BelongsToCurrentThread()) {
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::SetErrorState,
base::Unretained(this), error));
return;
}
// Notifying the client of an error will only happen if we are already
// initialized, as the API does not allow doing so before that. Subsequent
// errors and errors while destroying will be suppressed.
if (decoder_state_ != kError && decoder_state_ != kUninitialized &&
decoder_state_ != kDestroying)
NotifyError(error);
decoder_state_ = kError;
}
bool V4L2VideoDecodeAccelerator::GetFormatInfo(struct v4l2_format* format,
gfx::Size* visible_size,
bool* again) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
*again = false;
auto ret = output_queue_->GetFormat();
switch (ret.second) {
case 0:
*format = *ret.first;
break;
case EINVAL:
// EINVAL means we haven't seen sufficient stream to decode the format.
*again = true;
return true;
default:
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
// Make sure we are still getting the format we set on initialization.
if (format->fmt.pix_mp.pixelformat != output_format_fourcc_->ToV4L2PixFmt()) {
VLOGF(1) << "Unexpected format from G_FMT on output";
return false;
}
gfx::Size coded_size(format->fmt.pix_mp.width, format->fmt.pix_mp.height);
if (visible_size != nullptr)
*visible_size = GetVisibleSize(coded_size);
return true;
}
bool V4L2VideoDecodeAccelerator::CreateBuffersForFormat(
const struct v4l2_format& format,
const gfx::Size& visible_size) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
size_t egl_image_planes_count;
coded_size_.SetSize(format.fmt.pix_mp.width, format.fmt.pix_mp.height);
visible_size_ = visible_size;
egl_image_size_ = coded_size_;
if (image_processor_device_) {
egl_image_planes_count = 0;
auto output_size = coded_size_;
if (!V4L2ImageProcessorBackend::TryOutputFormat(
output_format_fourcc_->ToV4L2PixFmt(),
egl_image_format_fourcc_->ToV4L2PixFmt(), coded_size_, &output_size,
&egl_image_planes_count)) {
VLOGF(1) << "Fail to get output size and plane count of processor";
return false;
}
// This is very restrictive because it assumes the IP has the same alignment
// criteria as the video decoder that will produce the input video frames.
// In practice, this applies to all Image Processors, i.e. Mediatek devices.
DCHECK_EQ(coded_size_, output_size);
} else {
egl_image_planes_count = format.fmt.pix_mp.num_planes;
}
VLOGF(2) << "new resolution: " << coded_size_.ToString()
<< ", visible size: " << visible_size_.ToString()
<< ", decoder output planes count: " << format.fmt.pix_mp.num_planes
<< ", EGLImage size: " << egl_image_size_.ToString()
<< ", EGLImage plane count: " << egl_image_planes_count;
return CreateOutputBuffers();
}
gfx::Size V4L2VideoDecodeAccelerator::GetVisibleSize(
const gfx::Size& coded_size) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
auto ret = output_queue_->GetVisibleRect();
if (!ret) {
return coded_size;
}
gfx::Rect rect = std::move(*ret);
DVLOGF(3) << "visible rectangle is " << rect.ToString();
if (!gfx::Rect(coded_size).Contains(rect)) {
DVLOGF(3) << "visible rectangle " << rect.ToString()
<< " is not inside coded size " << coded_size.ToString();
return coded_size;
}
if (rect.IsEmpty()) {
VLOGF(1) << "visible size is empty";
return coded_size;
}
// Chrome assume picture frame is coded at (0, 0).
if (!rect.origin().IsOrigin()) {
VLOGF(1) << "Unexpected visible rectangle " << rect.ToString()
<< ", top-left is not origin";
return coded_size;
}
return rect.size();
}
bool V4L2VideoDecodeAccelerator::CreateInputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// We always run this as we prepare to initialize.
DCHECK_EQ(decoder_state_, kInitialized);
DCHECK(input_queue_);
if (input_queue_->AllocateBuffers(kInputBufferCount, V4L2_MEMORY_MMAP,
/*incoherent=*/false) == 0) {
LOG(ERROR) << "Failed allocating input buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
return true;
}
bool V4L2VideoDecodeAccelerator::SetupFormats() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kInitialized);
DCHECK(!input_queue_->IsStreaming());
DCHECK(!output_queue_->IsStreaming());
size_t input_size;
gfx::Size max_resolution, min_resolution;
GetSupportedResolution(base::BindRepeating(&V4L2Device::Ioctl, device_),
input_format_fourcc_, &min_resolution,
&max_resolution);
if (max_resolution.width() > 1920 && max_resolution.height() > 1088)
input_size = kInputBufferMaxSizeFor4k;
else
input_size = kInputBufferMaxSizeFor1080p;
struct v4l2_fmtdesc fmtdesc;
memset(&fmtdesc, 0, sizeof(fmtdesc));
fmtdesc.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
bool is_format_supported = false;
while (device_->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
if (fmtdesc.pixelformat == input_format_fourcc_) {
is_format_supported = true;
break;
}
++fmtdesc.index;
}
if (!is_format_supported) {
VLOGF(1) << "Input fourcc " << input_format_fourcc_
<< " not supported by device.";
return false;
}
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.pixelformat = input_format_fourcc_;
format.fmt.pix_mp.plane_fmt[0].sizeimage = input_size;
format.fmt.pix_mp.num_planes = 1;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.pixelformat, input_format_fourcc_);
// We have to set up the format for output, because the driver may not allow
// changing it once we start streaming; whether it can support our chosen
// output format or not may depend on the input format.
memset(&fmtdesc, 0, sizeof(fmtdesc));
fmtdesc.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
while (device_->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
auto fourcc = Fourcc::FromV4L2PixFmt(fmtdesc.pixelformat);
if (fourcc && device_->CanCreateEGLImageFrom(*fourcc)) {
output_format_fourcc_ = *fourcc;
break;
}
++fmtdesc.index;
}
DCHECK(!image_processor_device_);
if (!output_format_fourcc_) {
VLOGF(2) << "Could not find a usable output format. Try image processor";
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
if (base::FeatureList::IsEnabled(media::kPreferSoftwareMT21)) {
output_format_fourcc_ = Fourcc(Fourcc::MT21);
egl_image_format_fourcc_ = Fourcc(Fourcc::NV12);
} else {
#else
{
#endif
if (!V4L2ImageProcessorBackend::IsSupported()) {
VLOGF(1) << "Image processor not available";
return false;
}
output_format_fourcc_ =
v4l2_vda_helpers::FindImageProcessorInputFormat(device_.get());
if (!output_format_fourcc_) {
VLOGF(1) << "Can't find a usable input format from image processor";
return false;
}
egl_image_format_fourcc_ =
v4l2_vda_helpers::FindImageProcessorOutputFormat(device_.get());
if (!egl_image_format_fourcc_) {
VLOGF(1) << "Can't find a usable output format from image processor";
return false;
}
image_processor_device_ = base::MakeRefCounted<V4L2Device>();
}
} else {
egl_image_format_fourcc_ = output_format_fourcc_;
}
VLOGF(2) << "Output format=" << output_format_fourcc_->ToString();
// Just set the fourcc for output; resolution, etc., will come from the
// driver once it extracts it from the stream.
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.pixelformat = output_format_fourcc_->ToV4L2PixFmt();
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.pixelformat,
output_format_fourcc_->ToV4L2PixFmt());
return true;
}
bool V4L2VideoDecodeAccelerator::ResetImageProcessor() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!image_processor_->Reset())
return false;
while (!buffers_at_ip_.empty())
buffers_at_ip_.pop();
return true;
}
bool V4L2VideoDecodeAccelerator::CreateImageProcessor() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!image_processor_);
const ImageProcessor::OutputMode image_processor_output_mode =
(output_mode_ == Config::OutputMode::kAllocate
? ImageProcessor::OutputMode::ALLOCATE
: ImageProcessor::OutputMode::IMPORT);
// Start with a brand new image processor device, since the old one was
// already opened and attempting to open it again is not supported.
image_processor_device_ = base::MakeRefCounted<V4L2Device>();
image_processor_ = v4l2_vda_helpers::CreateImageProcessor(
*output_format_fourcc_, *egl_image_format_fourcc_, coded_size_,
coded_size_, gfx::Rect(visible_size_),
VideoFrame::StorageType::STORAGE_DMABUFS, output_buffer_map_.size(),
image_processor_device_, image_processor_output_mode,
decoder_thread_.task_runner(),
// Unretained(this) is safe for ErrorCB because |decoder_thread_| is owned
// by this V4L2VideoDecodeAccelerator and |this| must be valid when
// ErrorCB is executed.
base::BindRepeating(&V4L2VideoDecodeAccelerator::ImageProcessorError,
base::Unretained(this)));
if (!image_processor_) {
VLOGF(1) << "Error creating image processor";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
VLOGF(2) << "ImageProcessor is created: " << image_processor_->backend_type();
return true;
}
bool V4L2VideoDecodeAccelerator::ProcessFrame(int32_t bitstream_buffer_id,
V4L2ReadableBufferRef buf) {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
OutputRecord& output_record = output_buffer_map_[buf->BufferId()];
// Keep reference to the IP input until the frame is processed
buffers_at_ip_.push(std::make_pair(bitstream_buffer_id, buf));
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
if (base::FeatureList::IsEnabled(media::kPreferSoftwareMT21)) {
if (!mt21_decompressor_) {
LOG(ERROR) << "PreferSoftwareMT21 enabled, but MT21 decompressor was not "
"created!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
if (output_mode_ != Config::OutputMode::kImport) {
LOG(ERROR) << "Software MT21 does not support ALLOCATE output mode!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
if (buf->PlanesCount() != 2) {
LOG(ERROR) << "Wrong number of planes for MT21!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
std::unique_ptr<VideoFrameMapper> output_frame_mapper;
output_frame_mapper = VideoFrameMapperFactory::CreateMapper(
PIXEL_FORMAT_NV12, VideoFrame::STORAGE_DMABUFS,
/*force_linear_buffer_mapper=*/true);
if (!output_frame_mapper) {
output_frame_mapper = VideoFrameMapperFactory::CreateMapper(
PIXEL_FORMAT_NV12, VideoFrame::STORAGE_GPU_MEMORY_BUFFER,
/*force_linear_buffer_mapper=*/true);
}
if (!output_frame_mapper) {
LOG(ERROR) << "Failed to instantiate MT21 frame mapper!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
scoped_refptr<FrameResource> mapped_output_frame =
VideoFrameResource::Create(output_frame_mapper->MapFrame(
output_record.output_frame, PROT_READ | PROT_WRITE));
if (!mapped_output_frame) {
LOG(ERROR) << "Failed to map MT21 frame!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
{
TRACE_EVENT0("media,gpu", "V4L2VDA::MT21ToNV12");
mt21_decompressor_->MT21ToNV12(
static_cast<const uint8_t*>(buf->GetPlaneMapping(0)),
static_cast<const uint8_t*>(buf->GetPlaneMapping(1)),
buf->GetPlaneBytesUsed(0), buf->GetPlaneBytesUsed(1),
mapped_output_frame->GetWritableVisibleData(VideoFrame::Plane::kY),
mapped_output_frame->GetWritableVisibleData(VideoFrame::Plane::kUV));
}
FrameProcessed(bitstream_buffer_id, buf->BufferId(), mapped_output_frame);
return true;
}
#endif
scoped_refptr<FrameResource> input_frame = buf->GetFrameResource();
if (!input_frame) {
VLOGF(1) << "Could not get the input frame for the image processor!";
return false;
}
// The |input_frame| has a potentially incorrect visible rectangle and natural
// size: that frame gets created by V4L2Buffer::CreateVideoFrame() which uses
// v4l2_format::fmt.pix_mp.width and v4l2_format::fmt.pix_mp.height as the
// visible rectangle and natural size. However, those dimensions actually
// correspond to the coded size. Therefore, we should wrap |input_frame| into
// another frame with the right visible rectangle and natural size.
DCHECK(input_frame->visible_rect().origin().IsOrigin());
const gfx::Rect visible_rect = image_processor_->input_config().visible_rect;
const gfx::Size natural_size = visible_rect.size();
if (!gfx::Rect(input_frame->coded_size()).Contains(visible_rect) ||
!input_frame->visible_rect().Contains(visible_rect)) {
VLOGF(1) << "The visible size is too large!";
return false;
}
if (!gfx::Rect(input_frame->natural_size())
.Contains(gfx::Rect(natural_size))) {
VLOGF(1) << "The natural size is too large!";
return false;
}
scoped_refptr<FrameResource> cropped_input_frame =
input_frame->CreateWrappingFrame(visible_rect, natural_size);
if (!cropped_input_frame) {
VLOGF(1) << "Could not wrap the input frame for the image processor!";
return false;
}
// Unretained(this) is safe for FrameReadyCB because |decoder_thread_| is
// owned by this V4L2VideoDecodeAccelerator and |this| must be valid when
// FrameReadyCB is executed.
if (image_processor_->output_mode() == ImageProcessor::OutputMode::IMPORT) {
image_processor_->Process(
std::move(cropped_input_frame), output_record.output_frame,
base::BindOnce(&V4L2VideoDecodeAccelerator::FrameProcessed,
base::Unretained(this), bitstream_buffer_id,
buf->BufferId()));
} else {
image_processor_->Process(
std::move(cropped_input_frame),
base::BindOnce(&V4L2VideoDecodeAccelerator::FrameProcessed,
base::Unretained(this), bitstream_buffer_id));
}
return true;
}
bool V4L2VideoDecodeAccelerator::CreateOutputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(decoder_state_ == kInitialized ||
decoder_state_ == kChangingResolution);
DCHECK(output_queue_);
DCHECK(!output_queue_->IsStreaming());
DCHECK(output_buffer_map_.empty());
// Number of output buffers we need.
auto ctrl = device_->GetCtrl(V4L2_CID_MIN_BUFFERS_FOR_CAPTURE);
if (!ctrl)
return false;
output_dpb_size_ = ctrl->value;
// Output format setup in Initialize().
uint32_t buffer_count = output_dpb_size_ + kDpbOutputBufferExtraCount;
if (image_processor_device_)
buffer_count += kDpbOutputBufferExtraCountForImageProcessor;
DVLOGF(3) << "buffer_count=" << buffer_count
<< ", coded_size=" << coded_size_.ToString();
// With ALLOCATE mode the client can sample it as RGB and doesn't need to
// know the precise format.
VideoPixelFormat pixel_format =
(output_mode_ == Config::OutputMode::kImport)
? egl_image_format_fourcc_->ToVideoPixelFormat()
: PIXEL_FORMAT_UNKNOWN;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::ProvidePictureBuffersWithVisibleRect,
client_, buffer_count, pixel_format,
egl_image_size_, gfx::Rect(visible_size_)));
// Go into kAwaitingPictureBuffers to prevent us from doing any more decoding
// or event handling while we are waiting for AssignPictureBuffers(). Not
// having Pictures available would not have prevented us from making decoding
// progress entirely e.g. in the case of H.264 where we could further decode
// non-slice NALUs and could even get another resolution change before we were
// done with this one. After we get the buffers, we'll go back into kIdle and
// kick off further event processing, and eventually go back into kDecoding
// once no more events are pending (if any).
decoder_state_ = kAwaitingPictureBuffers;
return true;
}
void V4L2VideoDecodeAccelerator::DestroyInputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!input_queue_)
return;
if (!input_queue_->DeallocateBuffers()) {
VLOGF(1) << "Failed deallocating V4L2 input buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
}
bool V4L2VideoDecodeAccelerator::DestroyOutputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!output_queue_ || !output_queue_->IsStreaming());
bool success = true;
if (!output_queue_ || output_buffer_map_.empty())
return true;
// Release all buffers waiting for an import buffer event
output_wait_map_.clear();
for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
OutputRecord& output_record = output_buffer_map_[i];
DVLOGF(3) << "dismissing PictureBuffer id=" << output_record.picture_id;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::DismissPictureBuffer, client_,
output_record.picture_id));
}
if (!output_queue_->DeallocateBuffers()) {
LOG(ERROR) << "Failed deallocating output buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
success = false;
}
output_buffer_map_.clear();
return success;
}
void V4L2VideoDecodeAccelerator::SendBufferToClient(
size_t output_buffer_index,
int32_t bitstream_buffer_id,
V4L2ReadableBufferRef vda_buffer,
scoped_refptr<FrameResource> frame) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_GE(bitstream_buffer_id, 0);
OutputRecord& output_record = output_buffer_map_[output_buffer_index];
DCHECK_EQ(buffers_at_client_.count(output_record.picture_id), 0u);
// We need to keep the VDA buffer for now, as the IP still needs to be told
// which buffer to use so we cannot use this buffer index before the client
// has returned the corresponding IP buffer.
buffers_at_client_.emplace(
output_record.picture_id,
std::make_pair(std::move(vda_buffer), std::move(frame)));
const Picture picture(output_record.picture_id, bitstream_buffer_id,
gfx::Rect(visible_size_));
pending_picture_ready_.emplace(output_record.cleared, picture);
SendPictureReady();
// This picture will be cleared next time we see it.
output_record.cleared = true;
}
void V4L2VideoDecodeAccelerator::SendPictureReady() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
bool send_now = (decoder_state_ == kChangingResolution ||
decoder_state_ == kResetting || decoder_flushing_);
while (pending_picture_ready_.size() > 0) {
bool cleared = pending_picture_ready_.front().cleared;
const Picture& picture = pending_picture_ready_.front().picture;
if (cleared && picture_clearing_count_ == 0) {
// This picture is cleared. It can be posted to a thread different than
// the main GPU thread to reduce latency. This should be the case after
// all pictures are cleared at the beginning.
decode_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::PictureReady, decode_client_, picture));
pending_picture_ready_.pop();
} else if (!cleared || send_now) {
DVLOGF(4) << "cleared=" << pending_picture_ready_.front().cleared
<< ", decoder_state_=" << decoder_state_
<< ", decoder_flushing_=" << decoder_flushing_
<< ", picture_clearing_count_=" << picture_clearing_count_;
// If the picture is not cleared, post it to the child thread because it
// has to be cleared in the child thread. A picture only needs to be
// cleared once. If the decoder is changing resolution, resetting or
// flushing, send all pictures to ensure PictureReady arrive before
// ProvidePictureBuffers, NotifyResetDone, or NotifyFlushDone.
child_task_runner_->PostTaskAndReply(
FROM_HERE, base::BindOnce(&Client::PictureReady, client_, picture),
// Unretained is safe. If Client::PictureReady gets to run, |this| is
// alive. Destroy() will wait the decode thread to finish.
base::BindOnce(&V4L2VideoDecodeAccelerator::PictureCleared,
base::Unretained(this)));
picture_clearing_count_++;
pending_picture_ready_.pop();
} else {
// This picture is cleared. But some pictures are about to be cleared on
// the child thread. To preserve the order, do not send this until those
// pictures are cleared.
break;
}
}
}
void V4L2VideoDecodeAccelerator::PictureCleared() {
DVLOGF(4) << "clearing count=" << picture_clearing_count_;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_GT(picture_clearing_count_, 0);
picture_clearing_count_--;
SendPictureReady();
}
void V4L2VideoDecodeAccelerator::FrameProcessed(
int32_t bitstream_buffer_id,
size_t ip_buffer_index,
scoped_refptr<FrameResource> frame) {
DVLOGF(4) << "ip_buffer_index=" << ip_buffer_index
<< ", bitstream_buffer_id=" << bitstream_buffer_id;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// TODO(crbug.com/40609453): Remove this workaround once reset callback is
// implemented.
if (buffers_at_ip_.empty() ||
buffers_at_ip_.front().first != bitstream_buffer_id ||
output_buffer_map_.empty()) {
// This can happen if image processor is reset.
// V4L2VideoDecodeAccelerator::Reset() makes
// |buffers_at_ip_| empty.
// During ImageProcessor::Reset(), some FrameProcessed() can have been
// posted to |decoder_thread|. |bitsream_buffer_id| is pushed to
// |buffers_at_ip_| in ProcessFrame(). Although we
// are not sure a new bitstream buffer id is pushed after Reset() and before
// FrameProcessed(), We should skip the case of mismatch of bitstream buffer
// id for safety.
// For |output_buffer_map_|, it is cleared in Destroy(). Destroy() destroys
// ImageProcessor which may call FrameProcessed() in parallel similar to
// Reset() case.
DVLOGF(4) << "Ignore processed frame for bitstream_buffer_id="
<< bitstream_buffer_id;
return;
}
DCHECK_GE(ip_buffer_index, 0u);
DCHECK_LT(ip_buffer_index, output_buffer_map_.size());
// This is the output record for the buffer received from the IP, which index
// may differ from the buffer used by the VDA.
OutputRecord& ip_output_record = output_buffer_map_[ip_buffer_index];
DVLOGF(4) << "picture_id=" << ip_output_record.picture_id;
DCHECK_NE(ip_output_record.picture_id, -1);
// Remove our job from the IP jobs queue
DCHECK_GT(buffers_at_ip_.size(), 0u);
DCHECK(buffers_at_ip_.front().first == bitstream_buffer_id);
// This is the VDA buffer used as input of the IP.
V4L2ReadableBufferRef vda_buffer = std::move(buffers_at_ip_.front().second);
buffers_at_ip_.pop();
SendBufferToClient(ip_buffer_index, bitstream_buffer_id,
std::move(vda_buffer), std::move(frame));
// Flush or resolution change may be waiting image processor to finish.
if (buffers_at_ip_.empty()) {
NotifyFlushDoneIfNeeded();
if (decoder_state_ == kChangingResolution)
StartResolutionChange();
}
}
void V4L2VideoDecodeAccelerator::ImageProcessorError() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
VLOGF(1) << "Image processor error";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
bool V4L2VideoDecodeAccelerator::OnMemoryDump(
const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) {
// OnMemoryDump() must be performed on |decoder_thread_|.
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// |input_queue| and |output_queue| are owned by |decoder_thread_|.
size_t input_queue_buffers_count = 0;
size_t input_queue_memory_usage = 0;
std::string input_queue_buffers_memory_type;
if (input_queue_) {
input_queue_buffers_count = input_queue_->AllocatedBuffersCount();
input_queue_buffers_memory_type =
V4L2MemoryToString(input_queue_->GetMemoryType());
if (output_queue_->GetMemoryType() == V4L2_MEMORY_MMAP)
input_queue_memory_usage = input_queue_->GetMemoryUsage();
}
size_t output_queue_buffers_count = 0;
size_t output_queue_memory_usage = 0;
std::string output_queue_buffers_memory_type;
if (output_queue_) {
output_queue_buffers_count = output_queue_->AllocatedBuffersCount();
output_queue_buffers_memory_type =
V4L2MemoryToString(output_queue_->GetMemoryType());
if (output_queue_->GetMemoryType() == V4L2_MEMORY_MMAP)
output_queue_memory_usage = output_queue_->GetMemoryUsage();
}
const size_t total_usage =
input_queue_memory_usage + output_queue_memory_usage;
using ::base::trace_event::MemoryAllocatorDump;
auto dump_name = base::StringPrintf("gpu/v4l2/decoder/0x%" PRIxPTR,
reinterpret_cast<uintptr_t>(this));
MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(dump_name);
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(total_usage));
dump->AddScalar("input_queue_memory_usage", MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(input_queue_memory_usage));
dump->AddScalar("input_queue_buffers_count",
MemoryAllocatorDump::kUnitsObjects,
static_cast<uint64_t>(input_queue_buffers_count));
dump->AddString("input_queue_buffers_memory_type", "",
input_queue_buffers_memory_type);
dump->AddScalar("output_queue_memory_usage", MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(output_queue_memory_usage));
dump->AddScalar("output_queue_buffers_count",
MemoryAllocatorDump::kUnitsObjects,
static_cast<uint64_t>(output_queue_buffers_count));
dump->AddString("output_queue_buffers_memory_type", "",
output_queue_buffers_memory_type);
return true;
}
} // namespace media