1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
media / gpu / v4l2 / test / h264_decoder.cc [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/test/h264_decoder.h"
#include <linux/v4l2-controls.h>
#include <linux/videodev2.h>
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "media/gpu/macros.h"
#include "ui/gfx/geometry/rect.h"
namespace media {
namespace v4l2_test {
namespace {
constexpr uint32_t kDriverCodecFourcc = V4L2_PIX_FMT_H264_SLICE;
constexpr uint8_t zigzag_4x4[] = {0, 1, 4, 8, 5, 2, 3, 6,
9, 12, 13, 10, 7, 11, 14, 15};
constexpr uint8_t zigzag_8x8[] = {
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63};
// TODO(b/234752983): Set number of buffers in CAPTURE queue dynamically.
// |18| is the minimum number of buffers in the CAPTURE queue required to
// successfully decode all ITUT baseline and main bitstreams.
constexpr uint32_t kNumberOfBuffersInCaptureQueue = 18;
// Comparator struct used for H.264 picture reordering
struct H264PicOrderCompare {
bool operator()(const H264SliceMetadata* a,
const H264SliceMetadata* b) const {
return a->pic_order_cnt < b->pic_order_cnt;
}
};
// Extracts bit depth to |bit_depth| from the SPS. Returns true if is able
// to successfully extract bit depth. Otherwise returns false.
bool ParseBitDepth(const H264SPS& sps, uint8_t& bit_depth) {
// Spec 7.4.2.1.1
if (sps.bit_depth_luma_minus8 != sps.bit_depth_chroma_minus8) {
VLOGF(4) << "H264Decoder doesn't support different bit depths between luma"
<< "and chroma, bit_depth_luma_minus8="
<< sps.bit_depth_luma_minus8
<< ", bit_depth_chroma_minus8=" << sps.bit_depth_chroma_minus8;
return false;
}
DCHECK_GE(sps.bit_depth_luma_minus8, 0);
DCHECK_LE(sps.bit_depth_luma_minus8, 6);
switch (sps.bit_depth_luma_minus8) {
case 0:
bit_depth = 8u;
break;
case 2:
bit_depth = 10u;
break;
case 4:
bit_depth = 12u;
break;
case 6:
bit_depth = 14u;
break;
default:
VLOGF(4) << "Invalid bit depth: "
<< base::checked_cast<int>(sps.bit_depth_luma_minus8 + 8);
return false;
}
return true;
}
// Translates SPS into h264 sps ctrl structure.
v4l2_ctrl_h264_sps SetupSPSCtrl(const H264SPS* sps) {
struct v4l2_ctrl_h264_sps v4l2_sps = {};
v4l2_sps.profile_idc = sps->profile_idc;
v4l2_sps.constraint_set_flags =
(sps->constraint_set0_flag ? V4L2_H264_SPS_CONSTRAINT_SET0_FLAG : 0) |
(sps->constraint_set1_flag ? V4L2_H264_SPS_CONSTRAINT_SET1_FLAG : 0) |
(sps->constraint_set2_flag ? V4L2_H264_SPS_CONSTRAINT_SET2_FLAG : 0) |
(sps->constraint_set3_flag ? V4L2_H264_SPS_CONSTRAINT_SET3_FLAG : 0) |
(sps->constraint_set4_flag ? V4L2_H264_SPS_CONSTRAINT_SET4_FLAG : 0) |
(sps->constraint_set5_flag ? V4L2_H264_SPS_CONSTRAINT_SET5_FLAG : 0);
v4l2_sps.level_idc = sps->level_idc;
v4l2_sps.seq_parameter_set_id = sps->seq_parameter_set_id;
v4l2_sps.chroma_format_idc = sps->chroma_format_idc;
v4l2_sps.bit_depth_luma_minus8 = sps->bit_depth_luma_minus8;
v4l2_sps.bit_depth_chroma_minus8 = sps->bit_depth_chroma_minus8;
v4l2_sps.log2_max_frame_num_minus4 = sps->log2_max_frame_num_minus4;
v4l2_sps.pic_order_cnt_type = sps->pic_order_cnt_type;
v4l2_sps.log2_max_pic_order_cnt_lsb_minus4 =
sps->log2_max_pic_order_cnt_lsb_minus4;
v4l2_sps.max_num_ref_frames = sps->max_num_ref_frames;
v4l2_sps.num_ref_frames_in_pic_order_cnt_cycle =
sps->num_ref_frames_in_pic_order_cnt_cycle;
// Check that SPS offsets for ref frames size matches v4l2 sps.
static_assert(std::extent<decltype(v4l2_sps.offset_for_ref_frame)>() ==
std::extent<decltype(sps->offset_for_ref_frame)>(),
"SPS Offsets for ref frames size must match");
for (size_t i = 0; i < std::size(v4l2_sps.offset_for_ref_frame); i++)
v4l2_sps.offset_for_ref_frame[i] = sps->offset_for_ref_frame[i];
v4l2_sps.offset_for_non_ref_pic = sps->offset_for_non_ref_pic;
v4l2_sps.offset_for_top_to_bottom_field = sps->offset_for_top_to_bottom_field;
v4l2_sps.pic_width_in_mbs_minus1 = sps->pic_width_in_mbs_minus1;
v4l2_sps.pic_height_in_map_units_minus1 = sps->pic_height_in_map_units_minus1;
v4l2_sps.flags = 0;
if (sps->separate_colour_plane_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE;
if (sps->qpprime_y_zero_transform_bypass_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_QPPRIME_Y_ZERO_TRANSFORM_BYPASS;
if (sps->delta_pic_order_always_zero_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_DELTA_PIC_ORDER_ALWAYS_ZERO;
if (sps->gaps_in_frame_num_value_allowed_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_GAPS_IN_FRAME_NUM_VALUE_ALLOWED;
if (sps->frame_mbs_only_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY;
if (sps->mb_adaptive_frame_field_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD;
if (sps->direct_8x8_inference_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE;
return v4l2_sps;
}
// Translates PPS into h264 pps ctrl structure.
v4l2_ctrl_h264_pps SetupPPSCtrl(const H264PPS* pps) {
struct v4l2_ctrl_h264_pps v4l2_pps = {};
v4l2_pps.pic_parameter_set_id = pps->pic_parameter_set_id;
v4l2_pps.seq_parameter_set_id = pps->seq_parameter_set_id;
v4l2_pps.num_slice_groups_minus1 = pps->num_slice_groups_minus1;
v4l2_pps.num_ref_idx_l0_default_active_minus1 =
pps->num_ref_idx_l0_default_active_minus1;
v4l2_pps.num_ref_idx_l1_default_active_minus1 =
pps->num_ref_idx_l1_default_active_minus1;
v4l2_pps.weighted_bipred_idc = pps->weighted_bipred_idc;
v4l2_pps.pic_init_qp_minus26 = pps->pic_init_qp_minus26;
v4l2_pps.pic_init_qs_minus26 = pps->pic_init_qs_minus26;
v4l2_pps.chroma_qp_index_offset = pps->chroma_qp_index_offset;
v4l2_pps.second_chroma_qp_index_offset = pps->second_chroma_qp_index_offset;
v4l2_pps.flags = 0;
if (pps->entropy_coding_mode_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE;
if (pps->bottom_field_pic_order_in_frame_present_flag)
v4l2_pps.flags |=
V4L2_H264_PPS_FLAG_BOTTOM_FIELD_PIC_ORDER_IN_FRAME_PRESENT;
if (pps->weighted_pred_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_WEIGHTED_PRED;
if (pps->deblocking_filter_control_present_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT;
if (pps->constrained_intra_pred_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED;
if (pps->redundant_pic_cnt_present_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_REDUNDANT_PIC_CNT_PRESENT;
if (pps->transform_8x8_mode_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE;
if (pps->pic_scaling_matrix_present_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_SCALING_MATRIX_PRESENT;
return v4l2_pps;
}
// Sets up the h264 scaling matrix ctrl and checks against sps
// and pps scaling matrix sizes.
v4l2_ctrl_h264_scaling_matrix SetupScalingMatrix(const H264SPS* sps,
const H264PPS* pps) {
struct v4l2_ctrl_h264_scaling_matrix matrix = {};
// Makes sure that the size of the matrix scaling lists correspond
// to the PPS scaling matrix sizes.
static_assert(std::extent<decltype(matrix.scaling_list_4x4)>() <=
std::extent<decltype(pps->scaling_list4x4)>() &&
std::extent<decltype(matrix.scaling_list_4x4[0])>() <=
std::extent<decltype(pps->scaling_list4x4[0])>() &&
std::extent<decltype(matrix.scaling_list_8x8)>() <=
std::extent<decltype(pps->scaling_list8x8)>() &&
std::extent<decltype(matrix.scaling_list_8x8[0])>() <=
std::extent<decltype(pps->scaling_list8x8[0])>(),
"PPS scaling_lists must be of correct size");
// Makes sure that the size of the matrix scaling lists correspond
// to the SPS scaling matrix sizes.
static_assert(std::extent<decltype(matrix.scaling_list_4x4)>() <=
std::extent<decltype(sps->scaling_list4x4)>() &&
std::extent<decltype(matrix.scaling_list_4x4[0])>() <=
std::extent<decltype(sps->scaling_list4x4[0])>() &&
std::extent<decltype(matrix.scaling_list_8x8)>() <=
std::extent<decltype(sps->scaling_list8x8)>() &&
std::extent<decltype(matrix.scaling_list_8x8[0])>() <=
std::extent<decltype(sps->scaling_list8x8[0])>(),
"SPS scaling_lists must be of correct size");
const auto* scaling_list4x4 = &sps->scaling_list4x4[0];
const auto* scaling_list8x8 = &sps->scaling_list8x8[0];
if (pps->pic_scaling_matrix_present_flag) {
scaling_list4x4 = &pps->scaling_list4x4[0];
scaling_list8x8 = &pps->scaling_list8x8[0];
}
static_assert(std::extent<decltype(matrix.scaling_list_4x4), 1>() ==
std::extent<decltype(zigzag_4x4)>());
for (size_t i = 0; i < std::size(matrix.scaling_list_4x4); ++i) {
for (size_t j = 0; j < std::size(matrix.scaling_list_4x4[i]); ++j) {
matrix.scaling_list_4x4[i][zigzag_4x4[j]] = scaling_list4x4[i][j];
}
}
static_assert(std::extent<decltype(matrix.scaling_list_8x8), 1>() ==
std::extent<decltype(zigzag_8x8)>());
for (size_t i = 0; i < std::size(matrix.scaling_list_8x8); ++i) {
for (size_t j = 0; j < std::size(matrix.scaling_list_8x8[i]); ++j) {
matrix.scaling_list_8x8[i][zigzag_8x8[j]] = scaling_list8x8[i][j];
}
}
return matrix;
}
// Sets up v4l2_ctrl_h264_decode_params from data in the H264SliceHeader and
// the current H264SliceMetadata.
v4l2_ctrl_h264_decode_params SetupDecodeParams(
const H264SliceHeader& slice,
const H264SliceMetadata& slice_metadata,
const H264DPB& dpb) {
v4l2_ctrl_h264_decode_params v4l2_decode_params = {};
v4l2_decode_params.nal_ref_idc = slice.nal_ref_idc;
v4l2_decode_params.frame_num = slice.frame_num;
v4l2_decode_params.idr_pic_id = slice.idr_pic_id;
v4l2_decode_params.pic_order_cnt_lsb = slice.pic_order_cnt_lsb;
v4l2_decode_params.delta_pic_order_cnt_bottom =
slice.delta_pic_order_cnt_bottom;
v4l2_decode_params.delta_pic_order_cnt0 = slice.delta_pic_order_cnt0;
v4l2_decode_params.delta_pic_order_cnt1 = slice.delta_pic_order_cnt1;
v4l2_decode_params.dec_ref_pic_marking_bit_size =
slice.dec_ref_pic_marking_bit_size;
v4l2_decode_params.pic_order_cnt_bit_size = slice.pic_order_cnt_bit_size;
v4l2_decode_params.flags = 0;
if (slice.idr_pic_flag)
v4l2_decode_params.flags |= V4L2_H264_DECODE_PARAM_FLAG_IDR_PIC;
v4l2_decode_params.top_field_order_cnt = slice_metadata.top_field_order_cnt;
v4l2_decode_params.bottom_field_order_cnt =
slice_metadata.bottom_field_order_cnt;
size_t i = 0;
constexpr size_t kTimestampToNanoSecs = 1000;
for (const auto& element : dpb) {
struct v4l2_h264_dpb_entry& entry = v4l2_decode_params.dpb[i++];
entry = {.reference_ts = element.second.ref_ts_nsec * kTimestampToNanoSecs,
.pic_num = static_cast<unsigned short>(element.second.pic_num),
.frame_num = static_cast<unsigned short>(element.second.frame_num),
.fields = V4L2_H264_FRAME_REF,
.top_field_order_cnt = element.second.top_field_order_cnt,
.bottom_field_order_cnt = element.second.bottom_field_order_cnt,
.flags = static_cast<uint32_t>(
V4L2_H264_DPB_ENTRY_FLAG_VALID |
(element.second.ref ? V4L2_H264_DPB_ENTRY_FLAG_ACTIVE : 0) |
(element.second.long_term_reference_flag
? V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM
: 0))};
}
return v4l2_decode_params;
}
// Determines whether the current slice is part of the same
// frame as the previous slice.
// From h264 specification 7.4.1.2.4
bool IsNewFrame(const H264SliceMetadata& curr_picture,
const H264SliceHeader& curr_slice_hdr,
const H264SPS& sps) {
bool nalu_size_error = curr_picture.slice_header.nalu_size < 1;
bool slice_changed =
curr_slice_hdr.frame_num != curr_picture.slice_header.frame_num ||
curr_slice_hdr.pic_parameter_set_id !=
curr_picture.slice_header.pic_parameter_set_id ||
curr_slice_hdr.nal_ref_idc != curr_picture.slice_header.nal_ref_idc ||
curr_slice_hdr.idr_pic_flag != curr_picture.slice_header.idr_pic_flag ||
curr_slice_hdr.idr_pic_id != curr_picture.slice_header.idr_pic_id;
bool slice_pic_order_changed = false;
if (sps.pic_order_cnt_type == 0) {
slice_pic_order_changed =
curr_slice_hdr.pic_order_cnt_lsb !=
curr_picture.slice_header.pic_order_cnt_lsb ||
curr_slice_hdr.delta_pic_order_cnt_bottom !=
curr_picture.slice_header.delta_pic_order_cnt_bottom;
} else if (sps.pic_order_cnt_type == 1) {
slice_pic_order_changed =
curr_slice_hdr.delta_pic_order_cnt0 !=
curr_picture.slice_header.delta_pic_order_cnt0 ||
curr_slice_hdr.delta_pic_order_cnt1 !=
curr_picture.slice_header.delta_pic_order_cnt1;
}
return (nalu_size_error || slice_changed || slice_pic_order_changed);
}
// Returns the maximum DPB Macro Block Size (MBS) per level specified.
// Based on spec table A-2.
uint32_t GetMaxDPBMBS(uint8_t level) {
switch (level) {
case H264SPS::kLevelIDC1p0:
return 396; // Level 1.0
case H264SPS::kLevelIDC1B:
return 396; // Level 1b
case H264SPS::kLevelIDC1p1:
return 900; // Level 1.1
case H264SPS::kLevelIDC1p2:
return 2376; // Level 1.2
case H264SPS::kLevelIDC1p3:
return 2376; // Level 1.3
case H264SPS::kLevelIDC2p0:
return 2376; // Level 2.0
case H264SPS::kLevelIDC2p1:
return 4752; // Level 2.1
case H264SPS::kLevelIDC2p2:
return 8100; // Level 2.2
case H264SPS::kLevelIDC3p0:
return 8100; // Level 3.0
case H264SPS::kLevelIDC3p1:
return 18000; // Level 3.1
case H264SPS::kLevelIDC3p2:
return 20480; // Level 3.2
case H264SPS::kLevelIDC4p0:
return 32768; // Level 4.0
case H264SPS::kLevelIDC4p1:
return 32768; // Level 4.1
case H264SPS::kLevelIDC4p2:
return 34816; // Level 4.2
case H264SPS::kLevelIDC5p0:
return 110400; // Level 5.0
case H264SPS::kLevelIDC5p1:
return 184320; // Level 5.1
case H264SPS::kLevelIDC5p2:
default:
return 0;
}
}
} // namespace
void H264Decoder::ProcessSPS(const int sps_id) {
const H264SPS* sps = parser_->GetSPS(sps_id);
gfx::Size new_pic_size = sps->GetCodedSize().value_or(gfx::Size());
int width_mb = new_pic_size.width() / 16;
int height_mb = new_pic_size.height() / 16;
// Spec A.3.1 and A.3.2
// For Baseline, Constrained Baseline and Main profile, the indicated level is
// Level 1b if level_idc is equal to 11 and constraint_set3_flag is equal to 1
uint8_t level = base::checked_cast<uint8_t>(sps->level_idc);
if ((sps->profile_idc == H264SPS::kProfileIDCBaseline ||
sps->profile_idc == H264SPS::kProfileIDCConstrainedBaseline ||
sps->profile_idc == H264SPS::kProfileIDCMain) &&
level == 11 && sps->constraint_set3_flag) {
level = 9; // Level 1b
}
int max_dpb_mbs = base::checked_cast<int>(GetMaxDPBMBS(level));
// MaxDpbFrames from level limits per spec.
size_t max_dpb_frames = std::min(max_dpb_mbs / (width_mb * height_mb), 16);
size_t max_dpb_size =
std::max(static_cast<int>(max_dpb_frames),
std::max(sps->max_num_ref_frames, sps->max_dec_frame_buffering));
VideoCodecProfile new_profile =
H264Parser::ProfileIDCToVideoCodecProfile(sps->profile_idc);
uint8_t new_bit_depth = 0;
ParseBitDepth(*sps, new_bit_depth);
if (sps->vui_parameters_present_flag && sps->bitstream_restriction_flag) {
max_num_reorder_frames_ =
base::checked_cast<size_t>(sps->max_num_reorder_frames);
} else if (sps->constraint_set3_flag) {
// max_num_reorder_frames not present, infer from profile/constraints
// (see VUI semantics in spec).
switch (sps->profile_idc) {
case 44:
case 86:
case 100:
case 110:
case 122:
case 244:
max_num_reorder_frames_ = 0;
break;
default:
max_num_reorder_frames_ = max_dpb_size;
break;
}
} else {
max_num_reorder_frames_ = max_dpb_size;
}
if (pic_size_ != new_pic_size || dpb_.max_dpb_size_ != max_dpb_size ||
profile_ != new_profile || bit_depth_ != new_bit_depth) {
FlushDPB();
profile_ = new_profile;
bit_depth_ = new_bit_depth;
pic_size_ = new_pic_size;
dpb_.max_dpb_size_ = max_dpb_size;
}
}
void H264Decoder::FlushDPB() {
std::vector<H264SliceMetadata*> transmittable_slices =
dpb_.GetNotOutputtedPicsAppending();
std::sort(transmittable_slices.begin(), transmittable_slices.end(),
H264PicOrderCompare());
for (auto* i : transmittable_slices) {
i->outputted = true;
slice_ready_queue_.push(*i);
}
dpb_.clear();
}
void H264Decoder::InitializeDecoderLogic() {
parser_ = std::make_unique<H264Parser>();
parser_->SetStream(data_stream_->data(), data_stream_->length());
// Advance through NALUs until the first SPS. The start of the decodable
// data in an h.264 bistreams starts with an SPS.
while (true) {
H264NALU nalu;
H264Parser::Result res = parser_->AdvanceToNextNALU(&nalu);
CHECK(res == H264Parser::kOk);
if (nalu.nal_unit_type == H264NALU::kSPS) {
break;
}
}
int sps_id;
H264Parser::Result res = parser_->ParseSPS(&sps_id);
CHECK(res == H264Parser::kOk);
// Process initial SPS in bitstream and navigate to first slice in bitstream
// to setup ProcessNextFrame for decoding.
ProcessSPS(sps_id);
std::unique_ptr<H264NALU> curr_nalu;
while (true) {
curr_nalu = std::make_unique<H264NALU>();
if (parser_->AdvanceToNextNALU(curr_nalu.get()) == H264Parser::kEOStream) {
break;
}
if (curr_nalu->nal_unit_type == H264NALU::kIDRSlice ||
curr_nalu->nal_unit_type == H264NALU::kNonIDRSlice) {
break;
} else if (curr_nalu->nal_unit_type == H264NALU::kPPS) {
int pps_id;
CHECK(parser_->ParsePPS(&pps_id) == H264Parser::kOk);
}
}
curr_slice_hdr_ = std::make_unique<H264SliceHeader>();
CHECK(parser_->ParseSliceHeader(*curr_nalu, curr_slice_hdr_.get()) ==
H264Parser::kOk);
}
VideoDecoder::Result H264Decoder::SubmitSlice() {
std::vector<uint8_t> slice_data(
sizeof(V4L2_STATELESS_H264_START_CODE_ANNEX_B) - 1);
slice_data[2] = V4L2_STATELESS_H264_START_CODE_ANNEX_B;
slice_data.insert(slice_data.end(), (curr_slice_hdr_->nalu_data).get(),
(curr_slice_hdr_->nalu_data +
base::checked_cast<size_t>(curr_slice_hdr_->nalu_size))
.get());
scoped_refptr<MmappedBuffer> OUTPUT_buffer = OUTPUT_queue_->GetBuffer(0);
OUTPUT_buffer->mmapped_planes()[0].CopyIn(&slice_data[0], slice_data.size());
OUTPUT_buffer->set_frame_number(global_pic_count_);
if (!v4l2_ioctl_->QBuf(OUTPUT_queue_, 0)) {
VLOG(4) << "VIDIOC_QBUF failed for OUTPUT queue.";
return VideoDecoder::kError;
}
global_pic_count_++;
return VideoDecoder::kOk;
}
VideoDecoder::Result H264Decoder::InitializeSliceMetadata(
const H264SliceHeader& slice_hdr,
const H264SPS* sps,
H264SliceMetadata* slice_metadata) const {
if (!sps) {
return VideoDecoder::kError;
}
slice_metadata->slice_header = slice_hdr;
slice_metadata->ref_ts_nsec = global_pic_count_;
slice_metadata->ref = slice_hdr.nal_ref_idc != 0;
slice_metadata->frame_num = slice_hdr.frame_num;
slice_metadata->pic_num = slice_hdr.frame_num;
slice_metadata->pic_order_cnt_lsb = slice_hdr.pic_order_cnt_lsb;
const auto visible_rect = sps->GetVisibleRect();
// If there is no value, then the bitstream is invalid
CHECK(visible_rect.has_value());
slice_metadata->visible_rect_ = *visible_rect;
slice_metadata->long_term_reference_flag = slice_hdr.long_term_reference_flag;
if (slice_hdr.adaptive_ref_pic_marking_mode_flag) {
static_assert(sizeof(slice_metadata->ref_pic_marking) ==
sizeof(slice_hdr.ref_pic_marking),
"Array sizes of ref pic marking do not match.");
memcpy(slice_metadata->ref_pic_marking, slice_hdr.ref_pic_marking,
sizeof(slice_metadata->ref_pic_marking));
}
// Calculate H264 slice order counts.
switch (sps->pic_order_cnt_type) {
// See specification 8.2.1.1.
case 0: {
int prev_pic_order_cnt_msb, prev_pic_order_cnt_lsb;
if (slice_hdr.idr_pic_flag) {
prev_pic_order_cnt_msb = prev_pic_order_cnt_lsb = 0;
} else {
prev_pic_order_cnt_msb = prev_pic_order_.prev_ref_pic_order_cnt_msb;
prev_pic_order_cnt_lsb = prev_pic_order_.prev_ref_pic_order_cnt_lsb;
}
const int max_pic_order_cnt_lsb =
1 << (sps->log2_max_pic_order_cnt_lsb_minus4 + 4);
if ((slice_metadata->pic_order_cnt_lsb < prev_pic_order_cnt_lsb) &&
(prev_pic_order_cnt_lsb - slice_metadata->pic_order_cnt_lsb >=
max_pic_order_cnt_lsb / 2)) {
slice_metadata->pic_order_cnt_msb =
prev_pic_order_cnt_msb + max_pic_order_cnt_lsb;
} else if ((slice_metadata->pic_order_cnt_lsb > prev_pic_order_cnt_lsb) &&
(slice_metadata->pic_order_cnt_lsb - prev_pic_order_cnt_lsb >
max_pic_order_cnt_lsb / 2)) {
slice_metadata->pic_order_cnt_msb =
prev_pic_order_cnt_msb - max_pic_order_cnt_lsb;
} else {
slice_metadata->pic_order_cnt_msb = prev_pic_order_cnt_msb;
}
slice_metadata->top_field_order_cnt =
slice_metadata->pic_order_cnt_msb + slice_metadata->pic_order_cnt_lsb;
slice_metadata->bottom_field_order_cnt =
slice_metadata->top_field_order_cnt +
slice_hdr.delta_pic_order_cnt_bottom;
break;
}
case 1: {
// TODO(b/234752983): Implement pic ordering for pic order count type 1
// as defined in H.264 section 8.2.1.2.
break;
}
case 2: {
// Implements pic ordering for pic order count type 2 as defined
// in H.264 section 8.2.1.3.
if (slice_metadata->slice_header.idr_pic_flag) {
slice_metadata->frame_num_offset = 0;
} else if (prev_frame_num_ > slice_metadata->pic_num) {
slice_metadata->frame_num_offset =
prev_frame_num_offset_ +
(1 << (sps->log2_max_frame_num_minus4 + 4));
} else {
slice_metadata->frame_num_offset = prev_frame_num_offset_;
}
int temp_pic_order_cnt;
if (slice_metadata->slice_header.idr_pic_flag) {
temp_pic_order_cnt = 0;
} else if (!slice_metadata->slice_header.nal_ref_idc) {
temp_pic_order_cnt =
2 * (slice_metadata->frame_num_offset + slice_metadata->frame_num) -
1;
} else {
temp_pic_order_cnt =
2 * (slice_metadata->frame_num_offset + slice_metadata->frame_num);
}
slice_metadata->top_field_order_cnt = temp_pic_order_cnt;
slice_metadata->bottom_field_order_cnt = temp_pic_order_cnt;
break;
}
default: {
VLOGF(4) << "Invalid pic_order_cnt_type: " << sps->pic_order_cnt_type;
return VideoDecoder::kError;
}
}
slice_metadata->pic_order_cnt =
std::min(slice_metadata->top_field_order_cnt,
slice_metadata->bottom_field_order_cnt);
return VideoDecoder::kOk;
}
VideoDecoder::Result H264Decoder::StartNewFrame(
bool is_OUTPUT_queue_new,
H264SliceMetadata* slice_metadata) {
const H264PPS* pps = parser_->GetPPS(curr_slice_hdr_->pic_parameter_set_id);
const H264SPS* sps = parser_->GetSPS(pps->seq_parameter_set_id);
if (InitializeSliceMetadata(*(curr_slice_hdr_.get()), sps, slice_metadata) ==
VideoDecoder::kError) {
return VideoDecoder::kError;
}
if (curr_slice_hdr_->idr_pic_flag) {
if (!curr_slice_hdr_->no_output_of_prior_pics_flag) {
FlushDPB();
}
dpb_.clear();
}
int max_frame_num = 1 << (sps->log2_max_frame_num_minus4 + 4);
dpb_.UpdatePicNums(curr_slice_hdr_->frame_num, max_frame_num);
struct v4l2_ctrl_h264_sps v4l2_sps = SetupSPSCtrl(sps);
struct v4l2_ctrl_h264_pps v4l2_pps = SetupPPSCtrl(pps);
struct v4l2_ctrl_h264_scaling_matrix v4l2_matrix =
SetupScalingMatrix(sps, pps);
struct v4l2_ext_control ctrls[] = {
{.id = V4L2_CID_STATELESS_H264_SPS,
.size = sizeof(v4l2_sps),
.ptr = &v4l2_sps},
{.id = V4L2_CID_STATELESS_H264_PPS,
.size = sizeof(v4l2_pps),
.ptr = &v4l2_pps},
{.id = V4L2_CID_STATELESS_H264_SCALING_MATRIX,
.size = sizeof(v4l2_matrix),
.ptr = &v4l2_matrix}};
struct v4l2_ext_controls ext_ctrls = {
.count = (sizeof(ctrls) / sizeof(ctrls[0])), .controls = ctrls};
v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls, is_OUTPUT_queue_new);
return VideoDecoder::kOk;
}
void H264Decoder::ProcessNextFrame() {
H264SliceMetadata slice_metadata = {};
const bool is_OUTPUT_queue_new = !OUTPUT_queue_;
if (!OUTPUT_queue_) {
CreateOUTPUTQueue(kDriverCodecFourcc);
}
StartNewFrame(is_OUTPUT_queue_new, &slice_metadata);
v4l2_ctrl_h264_decode_params v4l2_decode_params =
SetupDecodeParams(*curr_slice_hdr_, slice_metadata, dpb_);
const int pps_id = curr_slice_hdr_->pic_parameter_set_id;
const int sps_id = parser_->GetPPS(pps_id)->seq_parameter_set_id;
struct v4l2_ext_control ctrls[] = {
{.id = V4L2_CID_STATELESS_H264_DECODE_PARAMS,
.size = sizeof(v4l2_decode_params),
.ptr = &v4l2_decode_params},
{.id = V4L2_CID_STATELESS_H264_DECODE_MODE,
.value = V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED}};
struct v4l2_ext_controls ext_ctrls = {
.count = (sizeof(ctrls) / sizeof(ctrls[0])), .controls = ctrls};
v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls);
SubmitSlice();
while (true) {
std::unique_ptr<H264NALU> curr_nalu = std::make_unique<H264NALU>();
if (parser_->AdvanceToNextNALU(curr_nalu.get()) == H264Parser::kEOStream) {
stream_finished_ = true;
break;
}
if (curr_nalu->nal_unit_type == H264NALU::kNonIDRSlice ||
curr_nalu->nal_unit_type == H264NALU::kIDRSlice) {
curr_slice_hdr_ = std::make_unique<H264SliceHeader>();
CHECK(parser_->ParseSliceHeader(*curr_nalu, curr_slice_hdr_.get()) ==
H264Parser::kOk);
const H264SPS* sps = parser_->GetSPS(sps_id);
if (IsNewFrame(slice_metadata, *curr_slice_hdr_.get(), *sps)) {
break;
}
} else if (curr_nalu->nal_unit_type == H264NALU::kSPS) {
int sps_info;
H264Parser::Result res = parser_->ParseSPS(&sps_info);
CHECK(res == H264Parser::kOk);
ProcessSPS(sps_id);
} else if (curr_nalu->nal_unit_type == H264NALU::kPPS) {
int pps_info;
H264Parser::Result res = parser_->ParsePPS(&pps_info);
CHECK(res == H264Parser::kOk);
}
// All other NALU's can be safely dropped/ignored.
}
FinishPicture(slice_metadata, sps_id);
if (stream_finished_) {
FlushDPB();
}
}
void H264Decoder::FinishPicture(H264SliceMetadata picture, const int sps_id) {
v4l2_ioctl_->MediaRequestIocQueue(OUTPUT_queue_);
if (!CAPTURE_queue_) {
CreateCAPTUREQueue(kNumberOfBuffersInCaptureQueue);
}
v4l2_ioctl_->WaitForRequestCompletion(OUTPUT_queue_);
uint32_t CAPTURE_id;
v4l2_ioctl_->DQBuf(CAPTURE_queue_, &CAPTURE_id);
CAPTURE_queue_->DequeueBufferId(CAPTURE_id);
picture.capture_queue_buffer_id = CAPTURE_id;
const std::set<uint32_t> reusable_buffer_slots =
GetReusableReferenceSlots(*CAPTURE_queue_->GetBuffer(CAPTURE_id).get(),
CAPTURE_queue_->queued_buffer_ids());
for (const auto reusable_buffer_slot : reusable_buffer_slots) {
if (!v4l2_ioctl_->QBuf(CAPTURE_queue_, reusable_buffer_slot)) {
VLOGF(4) << "VIDIOC_QBUF failed for CAPTURE queue.";
}
// Keeps track of which indices are currently queued in the
// CAPTURE queue. This will be used to determine which indices
// can/cannot be refreshed.
CAPTURE_queue_->QueueBufferId(reusable_buffer_slot);
}
if (picture.ref) {
// If picture is an IDR, need to unmark all unused reference pics.
// H.264 section 8.2.4.1.2.
if (picture.slice_header.idr_pic_flag) {
dpb_.MarkAllUnusedRef();
if (picture.long_term_reference_flag) {
picture.long_term_frame_idx = 0;
}
} else if (picture.slice_header.adaptive_ref_pic_marking_mode_flag) {
for (size_t i = 0; i < std::size(picture.ref_pic_marking); ++i) {
H264DecRefPicMarking* ref_pic_marking = &picture.ref_pic_marking[i];
// Handle Memory Mgmt operations as specified in specification 8.2.5.4.
switch (ref_pic_marking->memory_mgmnt_control_operation) {
case 0:
break;
case 1: {
const int pic_num_x =
picture.pic_num -
(ref_pic_marking->difference_of_pic_nums_minus1 + 1);
dpb_.UnmarkPicByPicNum(pic_num_x);
break;
}
case 2: {
dpb_.UnmarkLongTerm(ref_pic_marking->long_term_pic_num);
break;
}
case 3: {
// H.264 section 8.2.5.4.3
const int pic_num_x =
picture.pic_num -
(ref_pic_marking->difference_of_pic_nums_minus1 + 1);
H264SliceMetadata* short_pic =
dpb_.GetShortRefPicByPicNum(pic_num_x);
if (short_pic) {
H264SliceMetadata* long_term_mark = dpb_.GetLongRefPicByFrameIdx(
ref_pic_marking->long_term_frame_idx);
if (long_term_mark) {
long_term_mark->ref = false;
}
short_pic->long_term_reference_flag = true;
short_pic->long_term_frame_idx =
ref_pic_marking->long_term_frame_idx;
}
break;
}
case 4: {
const int max_long_term_frame_idx =
ref_pic_marking->max_long_term_frame_idx_plus1 - 1;
dpb_.UnmarkLongTermPicsGreaterThanFrameIndex(
max_long_term_frame_idx);
break;
}
default:
break;
}
}
} else {
// Use a sliding window method decoded reference picture marking process
// H.264 section 8.2.4.3.
const H264SPS* sps = parser_->GetSPS(sps_id);
int num_ref_pics = dpb_.CountRefPics();
if (num_ref_pics == std::max<int>(sps->max_num_ref_frames, 1)) {
dpb_.UnmarkLowestFrameNumWrapShortRefPic();
}
}
prev_pic_order_.prev_ref_pic_order_cnt_msb = picture.pic_order_cnt_msb;
prev_pic_order_.prev_ref_pic_order_cnt_lsb = picture.pic_order_cnt_lsb;
}
prev_frame_num_ = picture.frame_num;
prev_frame_num_offset_ = picture.frame_num_offset;
dpb_.DeleteUnused();
std::vector<H264SliceMetadata*> transmittable_slices =
dpb_.GetNotOutputtedPicsAppending();
// Include the current slice metadata to the list of transmittable slices.
transmittable_slices.push_back(&picture);
std::sort(transmittable_slices.begin(), transmittable_slices.end(),
H264PicOrderCompare());
auto output_candidate = transmittable_slices.begin();
size_t slices_remaining = transmittable_slices.size();
// Tries to output as many pictures as we can. A picture can be output,
// if the number of decoded and not yet outputted pictures that would remain
// in DPB afterwards would at least be equal to |max_num_reorder_frames|.
while (output_candidate != transmittable_slices.end() &&
(slices_remaining > max_num_reorder_frames_ ||
// If the DPB is full and the output candidate has not been
// outputted or is a reference picture then output this picture.
(dpb_.size() == dpb_.max_dpb_size_ &&
((!(*output_candidate)->outputted || (*output_candidate)->ref)) &&
slices_remaining))) {
DVLOG_IF(1, slices_remaining <= max_num_reorder_frames_)
<< "Invalid stream: max_num_reorder_frames not preserved";
(*output_candidate)->outputted = true;
slice_ready_queue_.push(**output_candidate);
// If the outputted picture is not a reference picture, it doesn't have
// to remain in the DPB and can be removed.
if (!(*output_candidate)->ref) {
// Current picture hasn't been inserted into DPB yet, so don't remove it
// if we managed to output it immediately.
if ((*output_candidate)->ref_ts_nsec != picture.ref_ts_nsec) {
dpb_.Delete(**output_candidate);
}
}
++output_candidate;
--slices_remaining;
}
if (!picture.outputted || picture.ref) {
dpb_.insert({picture.ref_ts_nsec, picture});
}
uint32_t OUTPUT_queue_buffer_id;
v4l2_ioctl_->DQBuf(OUTPUT_queue_, &OUTPUT_queue_buffer_id);
v4l2_ioctl_->MediaRequestIocReinit(OUTPUT_queue_);
}
// static
std::unique_ptr<H264Decoder> H264Decoder::Create(
const base::MemoryMappedFile& stream) {
auto parser = std::make_unique<H264Parser>();
parser->SetStream(stream.data(), stream.length());
// Advance through NALUs until the first SPS. The start of the decodable
// data in an h.264 bistreams starts with an SPS.
while (true) {
H264NALU nalu;
H264Parser::Result res = parser->AdvanceToNextNALU(&nalu);
if (res != H264Parser::kOk) {
LOG(ERROR) << "Unable to find SPS in stream";
return nullptr;
}
if (nalu.nal_unit_type == H264NALU::kSPS)
break;
}
int sps_id;
H264Parser::Result res = parser->ParseSPS(&sps_id);
CHECK(res == H264Parser::kOk);
const H264SPS* sps = parser->GetSPS(sps_id);
CHECK(sps);
std::optional<gfx::Size> coded_size = sps->GetCodedSize();
CHECK(coded_size);
auto v4l2_ioctl = std::make_unique<V4L2IoctlShim>(kDriverCodecFourcc);
return base::WrapUnique(
new H264Decoder(std::move(v4l2_ioctl), coded_size.value(), stream));
}
H264Decoder::H264Decoder(std::unique_ptr<V4L2IoctlShim> v4l2_ioctl,
gfx::Size display_resolution,
const base::MemoryMappedFile& data_stream)
: VideoDecoder::VideoDecoder(std::move(v4l2_ioctl), display_resolution),
curr_slice_hdr_(nullptr),
stream_finished_(false),
data_stream_(data_stream) {}
H264Decoder::~H264Decoder() = default;
std::set<uint32_t> H264Decoder::GetReusableReferenceSlots(
const MmappedBuffer& buffer,
std::set<uint32_t> queued_buffer_ids) {
std::set<uint32_t> reusable_buffer_slots = {};
const std::set<int> dpb_ids = dpb_.GetHeldCaptureIds();
for (size_t i = 0; i < CAPTURE_queue_->num_buffers(); i++) {
// Check that index is not currently queued in the CAPTURE queue and
// that it is not the same buffer index previously written to.
if (!queued_buffer_ids.count(i) && i != buffer.buffer_id()) {
if (dpb_ids.find(i) == dpb_ids.end()) {
reusable_buffer_slots.insert(i);
}
}
}
return reusable_buffer_slots;
}
VideoDecoder::Result H264Decoder::DecodeNextFrame(const int frame_number,
std::vector<uint8_t>& y_plane,
std::vector<uint8_t>& u_plane,
std::vector<uint8_t>& v_plane,
gfx::Size& size,
BitDepth& bit_depth) {
// If this is the start of the Decoder, initialize Decoder state.
if (!parser_) {
InitializeDecoderLogic();
}
// Keep decoding until either decoder has parsed entire bitstream or there is
// a decoded frame ready.
while (!stream_finished_ && slice_ready_queue_.empty()) {
ProcessNextFrame();
}
if (stream_finished_ && slice_ready_queue_.empty()) {
return VideoDecoder::kEOStream;
}
if (slice_ready_queue_.empty()) {
NOTREACHED() << "Stream ended with |slice_ready_queue_| empty";
}
H264SliceMetadata picture = slice_ready_queue_.front();
last_decoded_frame_visible_ = picture.outputted;
scoped_refptr<MmappedBuffer> buffer =
CAPTURE_queue_->GetBuffer(picture.capture_queue_buffer_id);
size = picture.visible_rect_.size();
if (!picture.visible_rect_.origin().IsOrigin()) {
// TODO(b/315491484): Handle cropping with non-zero origin
LOG(INFO) << "Non-zero visible rect origin.";
}
bit_depth =
ConvertToYUV(y_plane, u_plane, v_plane, size, buffer->mmapped_planes(),
CAPTURE_queue_->resolution(), CAPTURE_queue_->fourcc());
slice_ready_queue_.pop();
return VideoDecoder::kOk;
}
} // namespace v4l2_test
} // namespace media