1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528

media / gpu / v4l2 / test / vp9_decoder.cc [blame]

// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/gpu/v4l2/test/vp9_decoder.h"

#include <linux/v4l2-controls.h>
#include <linux/videodev2.h>
#include <sys/ioctl.h>

#include "base/bits.h"
#include "base/files/memory_mapped_file.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "media/gpu/macros.h"
#include "media/parsers/ivf_parser.h"
#include "media/parsers/vp9_parser.h"

namespace media {

namespace v4l2_test {
constexpr uint32_t kDriverCodecFourcc = V4L2_PIX_FMT_VP9_FRAME;

constexpr uint32_t kNumberOfBuffersInCaptureQueue = 10;

static_assert(kNumberOfBuffersInCaptureQueue <= 16,
              "Too many CAPTURE buffers are used. The number of CAPTURE "
              "buffers is currently assumed to be no larger than 16.");

#define SET_IF(bit_field, cond, mask) (bit_field) |= ((cond) ? (mask) : 0)

inline void conditionally_set_flag(struct v4l2_ctrl_vp9_frame& params,
                                   const bool condition,
                                   const __u32 flag) {
  params.flags |= condition ? flag : 0;
}

void FillV4L2VP9QuantizationParams(
    const Vp9QuantizationParams& vp9_quant_params,
    struct v4l2_vp9_quantization* v4l2_quant) {
  v4l2_quant->base_q_idx =
      base::checked_cast<__u8>(vp9_quant_params.base_q_idx);
  v4l2_quant->delta_q_y_dc =
      base::checked_cast<__s8>(vp9_quant_params.delta_q_y_dc);
  v4l2_quant->delta_q_uv_dc =
      base::checked_cast<__s8>(vp9_quant_params.delta_q_uv_dc);
  v4l2_quant->delta_q_uv_ac =
      base::checked_cast<__s8>(vp9_quant_params.delta_q_uv_ac);
}

void FillV4L2VP9LoopFilterParams(const Vp9LoopFilterParams& vp9_lf_params,
                                 struct v4l2_vp9_loop_filter* v4l2_lf) {
  SET_IF(v4l2_lf->flags, vp9_lf_params.delta_enabled,
         V4L2_VP9_LOOP_FILTER_FLAG_DELTA_ENABLED);

  SET_IF(v4l2_lf->flags, vp9_lf_params.delta_update,
         V4L2_VP9_LOOP_FILTER_FLAG_DELTA_UPDATE);

  v4l2_lf->level = vp9_lf_params.level;
  v4l2_lf->sharpness = vp9_lf_params.sharpness;
  SafeArrayMemcpy(v4l2_lf->ref_deltas, vp9_lf_params.ref_deltas);
  SafeArrayMemcpy(v4l2_lf->mode_deltas, vp9_lf_params.mode_deltas);
}

void FillV4L2VP9SegmentationParams(const Vp9SegmentationParams& vp9_seg_params,
                                   struct v4l2_vp9_segmentation* v4l2_seg) {
  SET_IF(v4l2_seg->flags, vp9_seg_params.enabled,
         V4L2_VP9_SEGMENTATION_FLAG_ENABLED);
  SET_IF(v4l2_seg->flags, vp9_seg_params.update_map,
         V4L2_VP9_SEGMENTATION_FLAG_UPDATE_MAP);
  SET_IF(v4l2_seg->flags, vp9_seg_params.temporal_update,
         V4L2_VP9_SEGMENTATION_FLAG_TEMPORAL_UPDATE);
  SET_IF(v4l2_seg->flags, vp9_seg_params.update_data,
         V4L2_VP9_SEGMENTATION_FLAG_UPDATE_DATA);
  SET_IF(v4l2_seg->flags, vp9_seg_params.abs_or_delta_update,
         V4L2_VP9_SEGMENTATION_FLAG_ABS_OR_DELTA_UPDATE);

  SafeArrayMemcpy(v4l2_seg->tree_probs, vp9_seg_params.tree_probs);
  SafeArrayMemcpy(v4l2_seg->pred_probs, vp9_seg_params.pred_probs);

  static_assert(static_cast<size_t>(Vp9SegmentationParams::SEG_LVL_MAX) ==
                    static_cast<size_t>(V4L2_VP9_SEG_LVL_MAX),
                "mismatch in number of segmentation features");

  for (size_t j = 0;
       j < std::extent<decltype(vp9_seg_params.feature_enabled), 0>::value;
       j++) {
    for (size_t i = 0;
         i < std::extent<decltype(vp9_seg_params.feature_enabled), 1>::value;
         i++) {
      if (vp9_seg_params.feature_enabled[j][i])
        v4l2_seg->feature_enabled[j] |= V4L2_VP9_SEGMENT_FEATURE_ENABLED(i);
    }
  }

  SafeArrayMemcpy(v4l2_seg->feature_data, vp9_seg_params.feature_data);
}

static void FillV4L2VP9MvProbsParams(const Vp9FrameContext& vp9_ctx,
                                     struct v4l2_vp9_mv_probs* v4l2_mv_probs) {
  SafeArrayMemcpy(v4l2_mv_probs->joint, vp9_ctx.mv_joint_probs);
  SafeArrayMemcpy(v4l2_mv_probs->sign, vp9_ctx.mv_sign_prob);
  SafeArrayMemcpy(v4l2_mv_probs->classes, vp9_ctx.mv_class_probs);
  SafeArrayMemcpy(v4l2_mv_probs->class0_bit, vp9_ctx.mv_class0_bit_prob);
  SafeArrayMemcpy(v4l2_mv_probs->bits, vp9_ctx.mv_bits_prob);
  SafeArrayMemcpy(v4l2_mv_probs->class0_fr, vp9_ctx.mv_class0_fr_probs);
  SafeArrayMemcpy(v4l2_mv_probs->fr, vp9_ctx.mv_fr_probs);
  SafeArrayMemcpy(v4l2_mv_probs->class0_hp, vp9_ctx.mv_class0_hp_prob);
  SafeArrayMemcpy(v4l2_mv_probs->hp, vp9_ctx.mv_hp_prob);
}

static void FillV4L2VP9ProbsParams(
    const Vp9FrameContext& vp9_ctx,
    struct v4l2_ctrl_vp9_compressed_hdr* v4l2_probs) {
  SafeArrayMemcpy(v4l2_probs->tx8, vp9_ctx.tx_probs_8x8);
  SafeArrayMemcpy(v4l2_probs->tx16, vp9_ctx.tx_probs_16x16);
  SafeArrayMemcpy(v4l2_probs->tx32, vp9_ctx.tx_probs_32x32);
  SafeArrayMemcpy(v4l2_probs->coef, vp9_ctx.coef_probs);
  SafeArrayMemcpy(v4l2_probs->skip, vp9_ctx.skip_prob);
  SafeArrayMemcpy(v4l2_probs->inter_mode, vp9_ctx.inter_mode_probs);
  SafeArrayMemcpy(v4l2_probs->interp_filter, vp9_ctx.interp_filter_probs);
  SafeArrayMemcpy(v4l2_probs->is_inter, vp9_ctx.is_inter_prob);
  SafeArrayMemcpy(v4l2_probs->comp_mode, vp9_ctx.comp_mode_prob);
  SafeArrayMemcpy(v4l2_probs->single_ref, vp9_ctx.single_ref_prob);
  SafeArrayMemcpy(v4l2_probs->comp_ref, vp9_ctx.comp_ref_prob);
  SafeArrayMemcpy(v4l2_probs->y_mode, vp9_ctx.y_mode_probs);
  SafeArrayMemcpy(v4l2_probs->uv_mode, vp9_ctx.uv_mode_probs);
  SafeArrayMemcpy(v4l2_probs->partition, vp9_ctx.partition_probs);

  FillV4L2VP9MvProbsParams(vp9_ctx, &v4l2_probs->mv);
}

Vp9Decoder::Vp9Decoder(std::unique_ptr<IvfParser> ivf_parser,
                       std::unique_ptr<V4L2IoctlShim> v4l2_ioctl,
                       gfx::Size display_resolution)
    : VideoDecoder::VideoDecoder(std::move(v4l2_ioctl), display_resolution),
      ivf_parser_(std::move(ivf_parser)),
      supports_compressed_headers_(
          v4l2_ioctl_->QueryCtrl(V4L2_CID_STATELESS_VP9_COMPRESSED_HDR)),
      vp9_parser_(std::make_unique<Vp9Parser>(supports_compressed_headers_)) {
  DCHECK(v4l2_ioctl_);

  // This control was landed in v5.17 and is pretty much a marker that the
  // driver supports the stable API.
  DCHECK(v4l2_ioctl_->QueryCtrl(V4L2_CID_STATELESS_VP9_FRAME));

  // MediaTek platforms don't support V4L2_CID_STATELESS_VP9_COMPRESSED_HDR.
  LOG_IF(INFO, !supports_compressed_headers_)
      << "VIDIOC_QUERYCTRL ioctl failure with "
         "V4L2_CID_STATELESS_VP9_COMPRESSED_HDR is expected because VP9 "
         "compressed header support is optional.";
}

Vp9Decoder::~Vp9Decoder() = default;

// static
std::unique_ptr<Vp9Decoder> Vp9Decoder::Create(
    const base::MemoryMappedFile& stream) {
  VLOG(2) << "Attempting to create decoder with codec "
          << media::FourccToString(kDriverCodecFourcc);

  // Set up video parser.
  auto ivf_parser = std::make_unique<media::IvfParser>();
  media::IvfFileHeader file_header{};

  if (!ivf_parser->Initialize(stream.data(), stream.length(), &file_header)) {
    LOG(ERROR) << "Couldn't initialize IVF parser";
    return nullptr;
  }

  const auto driver_codec_fourcc =
      media::v4l2_test::FileFourccToDriverFourcc(file_header.fourcc);

  if (driver_codec_fourcc != kDriverCodecFourcc) {
    VLOG(2) << "File fourcc (" << media::FourccToString(driver_codec_fourcc)
            << ") does not match expected fourcc("
            << media::FourccToString(kDriverCodecFourcc) << ").";
    return nullptr;
  }

  auto v4l2_ioctl = std::make_unique<V4L2IoctlShim>(kDriverCodecFourcc);

  gfx::Size display_resolution =
      gfx::Size(file_header.width, file_header.height);
  LOG(INFO) << "Ivf file header: " << display_resolution.ToString();

  return base::WrapUnique(new Vp9Decoder(
      std::move(ivf_parser), std::move(v4l2_ioctl), display_resolution));
}

std::set<int> Vp9Decoder::RefreshReferenceSlots(
    uint8_t refresh_frame_flags,
    scoped_refptr<MmappedBuffer> buffer,
    uint32_t last_queued_buffer_id) {
  const std::bitset<kVp9NumRefFrames> refresh_frame_slots(refresh_frame_flags);

  std::set<int> reusable_buffer_slots;

  static_assert(kVp9NumRefFrames == sizeof(refresh_frame_flags) * CHAR_BIT,
                "|refresh_frame_flags| size should not be larger than "
                "|kVp9NumRefFrames|");

  constexpr uint8_t kRefreshFrameFlagsNone = 0;
  if (refresh_frame_flags == kRefreshFrameFlagsNone) {
    // Indicates to reuse currently decoded CAPTURE buffer.
    reusable_buffer_slots.insert(buffer->buffer_id());

    return reusable_buffer_slots;
  }

  constexpr uint8_t kRefreshFrameFlagsAll = 0xFF;
  if (refresh_frame_flags == kRefreshFrameFlagsAll) {
    // After decoding a key frame, all CAPTURE buffers can be reused except the
    // CAPTURE buffer corresponding to the key frame.
    for (size_t i = 0; i < kNumberOfBuffersInCaptureQueue; i++)
      reusable_buffer_slots.insert(i);

    reusable_buffer_slots.erase(buffer->buffer_id());

    // Note that the CAPTURE buffer for previous frame can be used as well,
    // but it is already queued again at this point.
    reusable_buffer_slots.erase(last_queued_buffer_id);

    // Updates to assign current key frame as a reference frame for all
    // reference frame slots in the reference frames list.
    ref_frames_.fill(buffer);

    return reusable_buffer_slots;
  }

  // More than one slots in |refresh_frame_flags| can be set.
  uint16_t reusable_candidate_buffer_id;
  for (size_t i = 0; i < kVp9NumRefFrames; i++) {
    if (!refresh_frame_slots[i])
      continue;

    // It is not required to check whether existing reference frame slot is
    // already pointing to a reference frame. This is because reference
    // frame slots are empty only after the first key frame decoding.
    reusable_candidate_buffer_id = ref_frames_[i]->buffer_id();
    reusable_buffer_slots.insert(reusable_candidate_buffer_id);

    // Checks to make sure |reusable_candidate_buffer_id| is not used in
    // different reference frame slots in the reference frames list.
    for (size_t j = 0; j < kVp9NumRefFrames; j++) {
      const bool is_refresh_slot_not_used = (refresh_frame_slots[j] == false);
      const bool is_candidate_not_used =
          (ref_frames_[j]->buffer_id() == reusable_candidate_buffer_id);

      if (is_refresh_slot_not_used && is_candidate_not_used) {
        reusable_buffer_slots.erase(reusable_candidate_buffer_id);
        break;
      }
    }
    ref_frames_[i] = buffer;
  }

  return reusable_buffer_slots;
}

Vp9Parser::Result Vp9Decoder::ReadNextFrame(Vp9FrameHeader& vp9_frame_header,
                                            gfx::Size& size) {
  // TODO(jchinlee): reexamine this loop for cleanup.
  while (true) {
    std::unique_ptr<DecryptConfig> null_config;
    Vp9Parser::Result res =
        vp9_parser_->ParseNextFrame(&vp9_frame_header, &size, &null_config);
    if (res == Vp9Parser::kEOStream) {
      IvfFrameHeader ivf_frame_header{};
      const uint8_t* ivf_frame_data;

      if (!ivf_parser_->ParseNextFrame(&ivf_frame_header, &ivf_frame_data))
        return Vp9Parser::kEOStream;

      vp9_parser_->SetStream(ivf_frame_data, ivf_frame_header.frame_size,
                             /*stream_config=*/nullptr);
      continue;
    }

    return res;
  }
}

void Vp9Decoder::SetupFrameParams(
    const Vp9FrameHeader& frame_hdr,
    struct v4l2_ctrl_vp9_frame* v4l2_frame_params) {
  conditionally_set_flag(*v4l2_frame_params,
                         frame_hdr.frame_type == Vp9FrameHeader::KEYFRAME,
                         V4L2_VP9_FRAME_FLAG_KEY_FRAME);
  conditionally_set_flag(*v4l2_frame_params, frame_hdr.show_frame,
                         V4L2_VP9_FRAME_FLAG_SHOW_FRAME);
  conditionally_set_flag(*v4l2_frame_params, frame_hdr.error_resilient_mode,
                         V4L2_VP9_FRAME_FLAG_ERROR_RESILIENT);
  conditionally_set_flag(*v4l2_frame_params, frame_hdr.intra_only,
                         V4L2_VP9_FRAME_FLAG_INTRA_ONLY);
  conditionally_set_flag(*v4l2_frame_params, frame_hdr.allow_high_precision_mv,
                         V4L2_VP9_FRAME_FLAG_ALLOW_HIGH_PREC_MV);
  conditionally_set_flag(*v4l2_frame_params, frame_hdr.refresh_frame_context,
                         V4L2_VP9_FRAME_FLAG_REFRESH_FRAME_CTX);
  conditionally_set_flag(*v4l2_frame_params,
                         frame_hdr.frame_parallel_decoding_mode,
                         V4L2_VP9_FRAME_FLAG_PARALLEL_DEC_MODE);
  conditionally_set_flag(*v4l2_frame_params, frame_hdr.subsampling_x,
                         V4L2_VP9_FRAME_FLAG_X_SUBSAMPLING);
  conditionally_set_flag(*v4l2_frame_params, frame_hdr.subsampling_y,
                         V4L2_VP9_FRAME_FLAG_Y_SUBSAMPLING);
  conditionally_set_flag(*v4l2_frame_params, frame_hdr.color_range,
                         V4L2_VP9_FRAME_FLAG_COLOR_RANGE_FULL_SWING);

  v4l2_frame_params->compressed_header_size = frame_hdr.header_size_in_bytes;
  v4l2_frame_params->uncompressed_header_size =
      frame_hdr.uncompressed_header_size;
  v4l2_frame_params->profile = frame_hdr.profile;
  // As per the VP9 specification:
  switch (frame_hdr.reset_frame_context) {
    // "0 or 1 implies don’t reset."
    case 0:
    case 1:
      v4l2_frame_params->reset_frame_context = V4L2_VP9_RESET_FRAME_CTX_NONE;
      break;
    // "2 resets just the context specified in the frame header."
    case 2:
      v4l2_frame_params->reset_frame_context = V4L2_VP9_RESET_FRAME_CTX_SPEC;
      break;
    // "3 reset all contexts."
    case 3:
      v4l2_frame_params->reset_frame_context = V4L2_VP9_RESET_FRAME_CTX_ALL;
      break;
    default:
      LOG(FATAL) << "Invalid reset frame context value!";
  }
  v4l2_frame_params->frame_context_idx =
      frame_hdr.frame_context_idx_to_save_probs;
  v4l2_frame_params->bit_depth = frame_hdr.bit_depth;
  v4l2_frame_params->interpolation_filter = frame_hdr.interpolation_filter;
  v4l2_frame_params->tile_cols_log2 = frame_hdr.tile_cols_log2;
  v4l2_frame_params->tile_rows_log2 = frame_hdr.tile_rows_log2;
  v4l2_frame_params->reference_mode =
      frame_hdr.compressed_header.reference_mode;
  static_assert(Vp9RefType::VP9_FRAME_MAX - VP9_FRAME_LAST <
                    std::extent<decltype(frame_hdr.ref_frame_sign_bias)>::value,
                "array sizes are incompatible");
  for (size_t i = 0; i < Vp9RefType::VP9_FRAME_MAX - VP9_FRAME_LAST; i++) {
    v4l2_frame_params->ref_frame_sign_bias |=
        (frame_hdr.ref_frame_sign_bias[i + VP9_FRAME_LAST] ? (1 << i) : 0);
  }
  v4l2_frame_params->frame_width_minus_1 = frame_hdr.frame_width - 1;
  v4l2_frame_params->frame_height_minus_1 = frame_hdr.frame_height - 1;
  v4l2_frame_params->render_width_minus_1 = frame_hdr.render_width - 1;
  v4l2_frame_params->render_height_minus_1 = frame_hdr.render_height - 1;

  constexpr uint64_t kInvalidSurface = std::numeric_limits<uint32_t>::max();

  for (size_t i = 0; i < std::size(frame_hdr.ref_frame_idx); ++i) {
    const auto idx = frame_hdr.ref_frame_idx[i];

    LOG_ASSERT(idx < kVp9NumRefFrames) << "Invalid reference frame index.\n";

    // We need to convert a reference frame's frame_number() (in  microseconds)
    // to reference ID (in nanoseconds). Technically, v4l2_timeval_to_ns() is
    // suggested to be used to convert timestamp to nanoseconds, but multiplying
    // the microseconds part of timestamp |tv_usec| by |kTimestampToNanoSecs| to
    // make it nanoseconds is also known to work. This is how it is implemented
    // in v4l2 video decode accelerator tests as well as in gstreamer.
    // https://www.kernel.org/doc/html/v5.10/userspace-api/media/v4l/dev-stateless-decoder.html#buffer-management-while-decoding
    constexpr size_t kTimestampToNanoSecs = 1000;

    const auto reference_id =
        ref_frames_[idx]
            ? ref_frames_[idx]->frame_number() * kTimestampToNanoSecs
            : kInvalidSurface;

    // Only partially/indirectly documented in the VP9 spec, but this array
    // contains LAST, GOLDEN, and ALT, in that order.
    switch (i) {
      case 0:
        v4l2_frame_params->last_frame_ts = reference_id;
        break;
      case 1:
        v4l2_frame_params->golden_frame_ts = reference_id;
        break;
      case 2:
        v4l2_frame_params->alt_frame_ts = reference_id;
        break;
      default:
        NOTREACHED() << "Invalid reference frame index";
    }
  }

  FillV4L2VP9QuantizationParams(frame_hdr.quant_params,
                                &v4l2_frame_params->quant);

  const Vp9Parser::Context& context = vp9_parser_->context();
  const Vp9LoopFilterParams& lf_params = context.loop_filter();
  const Vp9SegmentationParams& segm_params = context.segmentation();

  FillV4L2VP9LoopFilterParams(lf_params, &v4l2_frame_params->lf);
  FillV4L2VP9SegmentationParams(segm_params, &v4l2_frame_params->seg);
}

void Vp9Decoder::CopyFrameData(const Vp9FrameHeader& frame_hdr,
                               std::unique_ptr<V4L2Queue>& queue) {
  LOG_ASSERT(queue->num_buffers() == 1)
      << "Only 1 buffer is expected to be used for OUTPUT queue for now.";

  LOG_ASSERT(queue->num_planes() == 1)
      << "Number of planes is expected to be 1 for OUTPUT queue.";

  scoped_refptr<MmappedBuffer> buffer = queue->GetBuffer(0);

  buffer->mmapped_planes()[0].CopyIn(frame_hdr.data.data(),
                                     frame_hdr.data.size());
}

VideoDecoder::Result Vp9Decoder::DecodeNextFrame(const int frame_number,
                                                 std::vector<uint8_t>& y_plane,
                                                 std::vector<uint8_t>& u_plane,
                                                 std::vector<uint8_t>& v_plane,
                                                 gfx::Size& size,
                                                 BitDepth& bit_depth) {
  Vp9FrameHeader frame_hdr;

  Vp9Parser::Result parser_res = ReadNextFrame(frame_hdr, size);
  switch (parser_res) {
    case Vp9Parser::kInvalidStream:
      LOG(FATAL) << "Failed to parse frame.";
    case Vp9Parser::kEOStream:
      return Vp9Decoder::kEOStream;
    case Vp9Parser::kOk:
      break;
  }

  const bool is_OUTPUT_queue_new = !OUTPUT_queue_;
  if (!OUTPUT_queue_) {
    CreateOUTPUTQueue(kDriverCodecFourcc);
  }

  VLOG_IF(2, !frame_hdr.show_frame) << "not displaying frame";
  last_decoded_frame_visible_ = frame_hdr.show_frame;

  CopyFrameData(frame_hdr, OUTPUT_queue_);

  LOG_ASSERT(OUTPUT_queue_->num_buffers() == 1)
      << "Too many buffers in OUTPUT queue. It is currently designed to "
         "support only 1 request at a time.";

  OUTPUT_queue_->GetBuffer(0)->set_frame_number(frame_number);

  if (!v4l2_ioctl_->QBuf(OUTPUT_queue_, 0))
    LOG(FATAL) << "VIDIOC_QBUF failed for OUTPUT queue.";

  struct v4l2_ctrl_vp9_frame v4l2_frame_params;
  memset(&v4l2_frame_params, 0, sizeof(v4l2_frame_params));

  SetupFrameParams(frame_hdr, &v4l2_frame_params);

  struct v4l2_ext_control ext_ctrl[2] = {{.id = V4L2_CID_STATELESS_VP9_FRAME,
                                          .size = sizeof(v4l2_frame_params),
                                          .ptr = &v4l2_frame_params}};

  struct v4l2_ext_controls ext_ctrls = {.count = 1, .controls = ext_ctrl};

  struct v4l2_ctrl_vp9_compressed_hdr v4l2_compressed_hdr_probs = {};
  if (supports_compressed_headers_) {
    v4l2_compressed_hdr_probs.tx_mode = frame_hdr.compressed_header.tx_mode;
    FillV4L2VP9ProbsParams(frame_hdr.frame_context, &v4l2_compressed_hdr_probs);

    ext_ctrl[ext_ctrls.count++] = {.id = V4L2_CID_STATELESS_VP9_COMPRESSED_HDR,
                                   .size = sizeof(v4l2_compressed_hdr_probs),
                                   .ptr = &v4l2_compressed_hdr_probs};
  }

  // Before the CAPTURE queue is set up the first frame must be parsed by the
  // driver. This is done so that when VIDIOC_G_FMT is called the frame
  // dimensions and format will be ready. Specifying V4L2_CTRL_WHICH_CUR_VAL
  // when VIDIOC_S_EXT_CTRLS processes the request immediately so that the frame
  // is parsed by the driver and the state is readied.
  v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls, is_OUTPUT_queue_new);
  v4l2_ioctl_->MediaRequestIocQueue(OUTPUT_queue_);

  if (!CAPTURE_queue_) {
    CreateCAPTUREQueue(kNumberOfBuffersInCaptureQueue);
  }

  v4l2_ioctl_->WaitForRequestCompletion(OUTPUT_queue_);

  uint32_t buffer_id;
  v4l2_ioctl_->DQBuf(CAPTURE_queue_, &buffer_id);

  scoped_refptr<MmappedBuffer> buffer = CAPTURE_queue_->GetBuffer(buffer_id);

  bit_depth =
      ConvertToYUV(y_plane, u_plane, v_plane, OUTPUT_queue_->resolution(),
                   buffer->mmapped_planes(), CAPTURE_queue_->resolution(),
                   CAPTURE_queue_->fourcc());

  const std::set<int> reusable_buffer_slots = RefreshReferenceSlots(
      frame_hdr.refresh_frame_flags, CAPTURE_queue_->GetBuffer(buffer_id),
      CAPTURE_queue_->last_queued_buffer_id());

  for (const auto reusable_buffer_slot : reusable_buffer_slots) {
    if (!v4l2_ioctl_->QBuf(CAPTURE_queue_, reusable_buffer_slot))
      LOG(ERROR) << "VIDIOC_QBUF failed for CAPTURE queue.";

    // For inter frames, |refresh_frame_flags| indicates which reference frame
    // slot (usually 1 slot, but can be more than 1 slots) can be reused. Then,
    // CAPTURE buffer corresponding to this reference frame slot is queued
    // again. If we encounter a key frame now, |refresh_frame_flags = 0xFF|
    // indicates all reference frame slots can be reused. But we already queued
    // one CAPTURE buffer again after decoding the previous frame. So we want to
    // avoid queuing this specific CAPTURE buffer again.
    // This issue only happens at key frames, which comes after inter frames.
    // Inter frames coming right after key frames doesn't have this issue, so we
    // don't need to track which buffer was queued for key frames.
    if (frame_hdr.frame_type == Vp9FrameHeader::INTERFRAME)
      CAPTURE_queue_->set_last_queued_buffer_id(reusable_buffer_slot);
  }

  v4l2_ioctl_->DQBuf(OUTPUT_queue_, &buffer_id);

  v4l2_ioctl_->MediaRequestIocReinit(OUTPUT_queue_);

  return Vp9Decoder::kOk;
}

}  // namespace v4l2_test
}  // namespace media