1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
media / gpu / v4l2 / v4l2_jpeg_encode_accelerator.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_jpeg_encode_accelerator.h"
#include <errno.h>
#include <linux/videodev2.h>
#include <string.h>
#include <sys/mman.h>
#include <algorithm>
#include <memory>
#include <tuple>
#include <utility>
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/task/bind_post_task.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/thread_pool.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/chromeos/platform_video_frame_utils.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_device.h"
#include "third_party/libyuv/include/libyuv.h"
#define IOCTL_OR_ERROR_RETURN_VALUE(type, arg, value, type_name) \
do { \
if (device_->Ioctl(type, arg) != 0) { \
VPLOGF(1) << "ioctl() failed: " << type_name; \
NotifyError(kInvalidBitstreamBufferId, PLATFORM_FAILURE); \
return value; \
} \
} while (0)
#define IOCTL_OR_ERROR_RETURN(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, ((void)0), #type)
#define IOCTL_OR_ERROR_RETURN_FALSE(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, false, #type)
#define IOCTL_OR_LOG_ERROR(type, arg) \
do { \
if (device_->Ioctl(type, arg) != 0) { \
VPLOGF(1) << "ioctl() failed: " << #type; \
NotifyError(kInvalidBitstreamBufferId, PLATFORM_FAILURE); \
} \
} while (0)
namespace media {
V4L2JpegEncodeAccelerator::I420BufferRecord::I420BufferRecord()
: at_device(false) {
memset(address, 0, sizeof(address));
memset(length, 0, sizeof(length));
}
V4L2JpegEncodeAccelerator::I420BufferRecord::~I420BufferRecord() {}
V4L2JpegEncodeAccelerator::JpegBufferRecord::JpegBufferRecord()
: at_device(false) {
memset(address, 0, sizeof(address));
memset(length, 0, sizeof(length));
}
V4L2JpegEncodeAccelerator::JpegBufferRecord::~JpegBufferRecord() {}
V4L2JpegEncodeAccelerator::JobRecord::JobRecord(
scoped_refptr<VideoFrame> input_frame,
scoped_refptr<VideoFrame> output_frame,
int quality,
int32_t task_id,
base::WritableSharedMemoryMapping exif_mapping)
: input_frame(input_frame),
output_frame(output_frame),
quality(quality),
task_id(task_id),
exif_mapping(std::move(exif_mapping)) {}
V4L2JpegEncodeAccelerator::JobRecord::JobRecord(
scoped_refptr<VideoFrame> input_frame,
int quality,
int32_t task_id,
base::WritableSharedMemoryMapping exif_mapping,
base::WritableSharedMemoryMapping output_mapping)
: input_frame(input_frame),
quality(quality),
task_id(task_id),
output_mapping(std::move(output_mapping)),
exif_mapping(std::move(exif_mapping)) {}
V4L2JpegEncodeAccelerator::JobRecord::~JobRecord() {}
V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::EncodedInstanceDmaBuf(
V4L2JpegEncodeAccelerator* parent)
: parent_(parent),
input_streamon_(false),
output_streamon_(false),
input_buffer_pixelformat_(0),
input_buffer_num_planes_(0),
output_buffer_pixelformat_(0) {}
V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::~EncodedInstanceDmaBuf() {}
void V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::DestroyTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
while (!input_job_queue_.empty())
input_job_queue_.pop();
while (!running_job_queue_.empty())
running_job_queue_.pop();
DestroyInputBuffers();
DestroyOutputBuffers();
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::Initialize() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
device_ = base::MakeRefCounted<V4L2Device>();
gpu_memory_buffer_support_ = std::make_unique<gpu::GpuMemoryBufferSupport>();
output_buffer_pixelformat_ = V4L2_PIX_FMT_JPEG;
if (!device_->Open(V4L2Device::Type::kJpegEncoder,
output_buffer_pixelformat_)) {
VLOGF(1) << "Failed to open device";
return false;
}
// Capabilities check.
struct v4l2_capability caps;
const __u32 kCapsRequired = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_M2M_MPLANE;
memset(&caps, 0, sizeof(caps));
if (device_->Ioctl(VIDIOC_QUERYCAP, &caps) != 0) {
VPLOGF(1) << "ioctl() failed: VIDIOC_QUERYCAP";
return false;
}
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
VLOGF(1) << "VIDIOC_QUERYCAP, caps check failed: 0x" << std::hex
<< caps.capabilities;
return false;
}
return true;
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::SetUpJpegParameters(
int quality,
gfx::Size coded_size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
struct v4l2_ext_controls ctrls;
struct v4l2_ext_control ctrl;
struct v4l2_query_ext_ctrl queryctrl;
memset(&ctrls, 0, sizeof(ctrls));
memset(&ctrl, 0, sizeof(ctrl));
memset(&queryctrl, 0, sizeof(queryctrl));
ctrls.which = V4L2_CTRL_WHICH_CUR_VAL;
ctrls.count = 0;
const bool use_modern_s_ext_ctrls =
device_->Ioctl(VIDIOC_S_EXT_CTRLS, &ctrls) == 0;
ctrls.which =
use_modern_s_ext_ctrls ? V4L2_CTRL_WHICH_CUR_VAL : V4L2_CTRL_CLASS_JPEG;
ctrls.controls = &ctrl;
ctrls.count = 1;
switch (output_buffer_pixelformat_) {
case V4L2_PIX_FMT_JPEG:
queryctrl.id = V4L2_CID_JPEG_COMPRESSION_QUALITY;
queryctrl.type = V4L2_CTRL_TYPE_INTEGER;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERY_EXT_CTRL, &queryctrl);
// interpolate the quality value
// Map quality value from range 1-100 to min-max.
quality = queryctrl.minimum +
(quality - 1) * (queryctrl.maximum - queryctrl.minimum) / 99;
ctrl.id = V4L2_CID_JPEG_COMPRESSION_QUALITY;
ctrl.value = quality;
VLOG(1) << "JPEG Quality: max:" << queryctrl.maximum
<< ", min:" << queryctrl.minimum << ", value:" << quality;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_EXT_CTRLS, &ctrls);
queryctrl.id = V4L2_CID_JPEG_ACTIVE_MARKER;
queryctrl.type = V4L2_CTRL_TYPE_BITMASK;
// Driver may not have implemented V4L2_CID_JPEG_ACTIVE_MARKER.
// Ignore any error and assume the driver implements the JPEG stream
// the way we want it.
std::ignore = device_->Ioctl(VIDIOC_QUERY_EXT_CTRL, &queryctrl);
// Ask for JPEG markers we want. Since not all may be implemented,
// ask for the common subset of what we want and what is supported.
ctrl.id = V4L2_CID_JPEG_ACTIVE_MARKER;
ctrl.value = queryctrl.maximum &
(V4L2_JPEG_ACTIVE_MARKER_APP0 | V4L2_JPEG_ACTIVE_MARKER_DQT |
V4L2_JPEG_ACTIVE_MARKER_DHT);
std::ignore = device_->Ioctl(VIDIOC_S_EXT_CTRLS, &ctrls);
break;
default:
NOTREACHED();
}
return true;
}
size_t
V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::InputBufferQueuedCount() {
return kBufferCount - free_input_buffers_.size();
}
size_t
V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::OutputBufferQueuedCount() {
return kBufferCount - free_output_buffers_.size();
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::CreateBuffers(
gfx::Size coded_size,
const VideoFrameLayout& input_layout,
size_t output_buffer_size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
// The order of set output/input formats matters.
// rk3399 reset input format when we set output format.
if (!SetOutputBufferFormat(coded_size, output_buffer_size)) {
return false;
}
if (!SetInputBufferFormat(coded_size, input_layout)) {
return false;
}
if (!RequestInputBuffers()) {
return false;
}
if (!RequestOutputBuffers()) {
return false;
}
return true;
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::SetInputBufferFormat(
gfx::Size coded_size,
const VideoFrameLayout& input_layout) {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
DCHECK(!input_streamon_);
DCHECK(input_job_queue_.empty());
constexpr uint32_t input_pix_fmt_candidates[] = {V4L2_PIX_FMT_NV12M,
V4L2_PIX_FMT_NV12};
struct v4l2_format format;
input_buffer_pixelformat_ = 0;
for (const auto input_pix_fmt : input_pix_fmt_candidates) {
DCHECK_EQ(Fourcc::FromV4L2PixFmt(input_pix_fmt)->ToVideoPixelFormat(),
PIXEL_FORMAT_NV12);
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.num_planes = kMaxNV12Plane;
format.fmt.pix_mp.pixelformat = input_pix_fmt;
format.fmt.pix_mp.field = V4L2_FIELD_ANY;
// set the input buffer resolution with padding and use selection API to
// crop the coded size.
format.fmt.pix_mp.width = input_layout.planes()[0].stride;
format.fmt.pix_mp.height = coded_size.height();
auto num_planes = input_layout.num_planes();
for (size_t i = 0; i < num_planes; i++) {
format.fmt.pix_mp.plane_fmt[i].sizeimage = input_layout.planes()[i].size;
format.fmt.pix_mp.plane_fmt[i].bytesperline =
input_layout.planes()[i].stride;
}
if (device_->Ioctl(VIDIOC_S_FMT, &format) == 0 &&
format.fmt.pix_mp.pixelformat == input_pix_fmt) {
device_input_layout_ = V4L2FormatToVideoFrameLayout(format);
// Save V4L2 returned values.
input_buffer_pixelformat_ = format.fmt.pix_mp.pixelformat;
input_buffer_num_planes_ = format.fmt.pix_mp.num_planes;
break;
}
}
if (input_buffer_pixelformat_ == 0) {
VLOGF(1) << "Neither NV12 nor NV12M is supported.";
return false;
}
// It can't allow different width.
if (format.fmt.pix_mp.width !=
static_cast<uint32_t>(input_layout.planes()[0].stride)) {
LOG(WARNING) << "Different stride:" << format.fmt.pix_mp.width
<< "!=" << input_layout.planes()[0].stride;
return false;
}
// We can allow our buffer to have larger height than encoder's requirement
// because we set the 2nd plane by data_offset now.
if (format.fmt.pix_mp.height > static_cast<uint32_t>(coded_size.height())) {
if (input_buffer_pixelformat_ == V4L2_PIX_FMT_NV12M) {
// Calculate the real buffer height of the DMA buffer from minigbm.
uint32_t height_with_padding =
input_layout.planes()[0].size / input_layout.planes()[0].stride;
if (format.fmt.pix_mp.height > height_with_padding) {
LOG(WARNING) << "Encoder requires larger height:"
<< format.fmt.pix_mp.height << ">" << height_with_padding;
return false;
}
} else {
LOG(WARNING) << "Encoder requires larger height:"
<< format.fmt.pix_mp.height << ">" << coded_size.height();
return false;
}
}
if ((uint32_t)coded_size.width() != format.fmt.pix_mp.width ||
(uint32_t)coded_size.height() != format.fmt.pix_mp.height) {
v4l2_selection selection = {};
selection.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
selection.target = V4L2_SEL_TGT_CROP;
selection.flags = V4L2_SEL_FLAG_GE | V4L2_SEL_FLAG_LE;
selection.r.left = 0;
selection.r.top = 0;
selection.r.width = coded_size.width();
selection.r.height = coded_size.height();
if (device_->Ioctl(VIDIOC_S_SELECTION, &selection) != 0) {
LOG(WARNING) << "VIDIOC_S_SELECTION Fail";
return false;
}
}
return true;
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::SetOutputBufferFormat(
gfx::Size coded_size,
size_t buffer_size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
DCHECK(!output_streamon_);
DCHECK(running_job_queue_.empty());
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.num_planes = kMaxJpegPlane;
format.fmt.pix_mp.pixelformat = output_buffer_pixelformat_;
format.fmt.pix_mp.field = V4L2_FIELD_ANY;
format.fmt.pix_mp.plane_fmt[0].sizeimage = buffer_size;
format.fmt.pix_mp.width = coded_size.width();
format.fmt.pix_mp.height = coded_size.height();
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.pixelformat, output_buffer_pixelformat_);
output_buffer_sizeimage_ = format.fmt.pix_mp.plane_fmt[0].sizeimage;
return true;
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::RequestInputBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.pixelformat = input_buffer_pixelformat_;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_G_FMT, &format);
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = kBufferCount;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
reqbufs.memory = V4L2_MEMORY_DMABUF;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
DCHECK(free_input_buffers_.empty());
for (size_t i = 0; i < reqbufs.count; ++i) {
free_input_buffers_.push_back(i);
}
return true;
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::RequestOutputBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = kBufferCount;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbufs.memory = V4L2_MEMORY_DMABUF;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
DCHECK(free_output_buffers_.empty());
for (size_t i = 0; i < reqbufs.count; ++i) {
free_output_buffers_.push_back(i);
}
return true;
}
void V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::DestroyInputBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
free_input_buffers_.clear();
if (input_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
IOCTL_OR_ERROR_RETURN(VIDIOC_STREAMOFF, &type);
input_streamon_ = false;
}
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = 0;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
reqbufs.memory = V4L2_MEMORY_DMABUF;
IOCTL_OR_LOG_ERROR(VIDIOC_REQBUFS, &reqbufs);
input_buffer_num_planes_ = 0;
}
void V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::DestroyOutputBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
free_output_buffers_.clear();
if (output_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
IOCTL_OR_ERROR_RETURN(VIDIOC_STREAMOFF, &type);
output_streamon_ = false;
}
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = 0;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbufs.memory = V4L2_MEMORY_DMABUF;
IOCTL_OR_LOG_ERROR(VIDIOC_REQBUFS, &reqbufs);
}
void V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::ServiceDevice() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
if (!running_job_queue_.empty()) {
Dequeue();
}
EnqueueInput();
EnqueueOutput();
DVLOGF(3) << "buffer counts: INPUT[" << input_job_queue_.size()
<< "] => DEVICE[" << free_input_buffers_.size() << "/"
<< "->" << free_output_buffers_.size() << "]";
}
void V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::EnqueueInput() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
while (!input_job_queue_.empty() && !free_input_buffers_.empty()) {
if (!EnqueueInputRecord())
return;
}
if (!input_streamon_ && InputBufferQueuedCount()) {
__u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
IOCTL_OR_ERROR_RETURN(VIDIOC_STREAMON, &type);
input_streamon_ = true;
}
}
void V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::EnqueueOutput() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
while (running_job_queue_.size() > OutputBufferQueuedCount() &&
!free_output_buffers_.empty()) {
if (!EnqueueOutputRecord())
return;
}
if (!output_streamon_ && OutputBufferQueuedCount()) {
__u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
IOCTL_OR_ERROR_RETURN(VIDIOC_STREAMON, &type);
output_streamon_ = true;
}
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::EnqueueInputRecord() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
DCHECK(!input_job_queue_.empty());
DCHECK(!free_input_buffers_.empty());
// Enqueue an input (VIDEO_OUTPUT) buffer for an input video frame.
std::unique_ptr<JobRecord> job_record = std::move(input_job_queue_.front());
input_job_queue_.pop();
const int index = free_input_buffers_.back();
struct v4l2_buffer qbuf;
struct v4l2_plane planes[kMaxNV12Plane];
memset(&qbuf, 0, sizeof(qbuf));
memset(planes, 0, sizeof(planes));
qbuf.index = index;
qbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
qbuf.memory = V4L2_MEMORY_DMABUF;
qbuf.length = std::size(planes);
qbuf.m.planes = planes;
const auto& frame = job_record->input_frame;
const auto num_fds = frame->NumDmabufFds();
DCHECK(num_fds > 0);
for (size_t i = 0; i < input_buffer_num_planes_; i++) {
if (device_input_layout_->is_multi_planar()) {
qbuf.m.planes[i].bytesused = base::checked_cast<__u32>(
VideoFrame::PlaneSize(frame->format(), i,
device_input_layout_->coded_size())
.GetArea());
} else {
qbuf.m.planes[i].bytesused = VideoFrame::AllocationSize(
frame->format(), device_input_layout_->coded_size());
}
// If there are fewer FD's than planes, then re-use the last FD for the
// additional planes.
const size_t dmabuf_index = std::min<size_t>(i, num_fds - 1);
const auto& layout_planes = frame->layout().planes();
qbuf.m.planes[i].m.fd = frame->GetDmabufFd(dmabuf_index);
qbuf.m.planes[i].data_offset = layout_planes[i].offset;
qbuf.m.planes[i].bytesused += qbuf.m.planes[i].data_offset;
qbuf.m.planes[i].length =
layout_planes[i].size + qbuf.m.planes[i].data_offset;
}
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QBUF, &qbuf);
running_job_queue_.push(std::move(job_record));
free_input_buffers_.pop_back();
return true;
}
bool V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::EnqueueOutputRecord() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
DCHECK(!free_output_buffers_.empty());
// Enqueue an output (VIDEO_CAPTURE) buffer.
const int index = free_output_buffers_.back();
struct v4l2_buffer qbuf;
struct v4l2_plane planes[kMaxJpegPlane];
memset(&qbuf, 0, sizeof(qbuf));
memset(planes, 0, sizeof(planes));
qbuf.index = index;
qbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
qbuf.memory = V4L2_MEMORY_DMABUF;
qbuf.length = std::size(planes);
qbuf.m.planes = planes;
auto& job_record = running_job_queue_.back();
for (size_t i = 0; i < qbuf.length; i++) {
planes[i].m.fd = job_record->output_frame->GetDmabufFd(i);
}
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QBUF, &qbuf);
free_output_buffers_.pop_back();
return true;
}
size_t V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::FinalizeJpegImage(
scoped_refptr<VideoFrame> output_frame,
size_t buffer_size,
base::WritableSharedMemoryMapping exif_mapping) {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
size_t idx = 0;
auto output_gmb_handle = CreateGpuMemoryBufferHandle(output_frame.get());
DCHECK(!output_gmb_handle.is_null());
// In this case, we use the R_8 buffer with height == 1 to represent a data
// container. As a result, we use plane.stride as size of the data here since
// plane.size might be larger due to height alignment.
const gfx::Size output_gmb_buffer_size(
base::checked_cast<int32_t>(output_frame->layout().planes()[0].stride),
1);
auto output_gmb_buffer =
gpu_memory_buffer_support_->CreateGpuMemoryBufferImplFromHandle(
std::move(output_gmb_handle), output_gmb_buffer_size,
gfx::BufferFormat::R_8, gfx::BufferUsage::SCANOUT_CAMERA_READ_WRITE,
base::DoNothing());
if (!output_gmb_buffer) {
VLOGF(1) << "Failed to import gmb buffer";
return 0;
}
bool isMapped = output_gmb_buffer->Map();
if (!isMapped) {
VLOGF(1) << "Failed to map gmb buffer";
return 0;
}
uint8_t* dst_ptr = static_cast<uint8_t*>(output_gmb_buffer->memory(0));
// Fill SOI and EXIF markers.
static const uint8_t kJpegStart[] = {0xFF, JPEG_SOI};
if (exif_mapping.IsValid()) {
uint8_t* exif_buffer = exif_mapping.GetMemoryAs<uint8_t>();
size_t exif_buffer_size = exif_mapping.size();
// Application Segment for Exif data.
uint16_t exif_segment_size = static_cast<uint16_t>(exif_buffer_size + 2);
const uint8_t kAppSegment[] = {
0xFF, JPEG_APP1, static_cast<uint8_t>(exif_segment_size / 256),
static_cast<uint8_t>(exif_segment_size % 256)};
// V4L2_PIX_FMT_JPEG refers to a valid JPEG bitstream. It does not
// imply a standard JFIF bitstream with JFIF-APP0 markers.
// Move data after SOI to make room for APP1 marker and EXIF data.
// If an APP0 marker is found directly after the SOI marker, skip
// over it.
// The JPEG from V4L2_PIX_FMT_JPEG is
// SOI-marker1-marker2-...-SOS-compressed stream-EOI
// |......| <- src_data_offset = len(SOI) + len(APP0) (if APP0 found)
// |...................| <- data_offset = len(SOI) + len(APP1)
size_t data_offset =
sizeof(kJpegStart) + sizeof(kAppSegment) + exif_buffer_size;
size_t src_data_offset = sizeof(kJpegStart);
// Check for APP0 segment following SOI marker and skip over it if found
if (dst_ptr[2] == JPEG_MARKER_PREFIX && dst_ptr[3] == JPEG_APP0) {
src_data_offset += 2 + ((dst_ptr[4] << 8) | dst_ptr[5]);
if (src_data_offset >= buffer_size) {
LOG(WARNING) << "APP0 segment from encoder extends beyond JPEG buffer";
return 0;
}
}
buffer_size -= src_data_offset;
if (buffer_size + data_offset > output_buffer_sizeimage_) {
LOG(WARNING) << "JPEG buffer is too small for the EXIF metadata";
return 0;
}
memmove(dst_ptr + data_offset, dst_ptr + src_data_offset, buffer_size);
memcpy(dst_ptr, kJpegStart, sizeof(kJpegStart));
idx += sizeof(kJpegStart);
memcpy(dst_ptr + idx, kAppSegment, sizeof(kAppSegment));
idx += sizeof(kAppSegment);
memcpy(dst_ptr + idx, exif_buffer, exif_buffer_size);
idx += exif_buffer_size;
}
switch (output_buffer_pixelformat_) {
case V4L2_PIX_FMT_JPEG:
idx += buffer_size;
break;
default:
NOTREACHED() << "Unsupported output pixel format";
}
output_gmb_buffer->Unmap();
return idx;
}
void V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::Dequeue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
// Dequeue completed input (VIDEO_OUTPUT) buffers,
// and recycle to the free list.
struct v4l2_buffer dqbuf;
struct v4l2_plane planes[kMaxNV12Plane];
while (InputBufferQueuedCount() > 0) {
DCHECK(input_streamon_);
memset(&dqbuf, 0, sizeof(dqbuf));
memset(planes, 0, sizeof(planes));
dqbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
dqbuf.memory = V4L2_MEMORY_DMABUF;
dqbuf.length = std::size(planes);
dqbuf.m.planes = planes;
if (device_->Ioctl(VIDIOC_DQBUF, &dqbuf) != 0) {
if (errno == EAGAIN) {
// EAGAIN if we're just out of buffers to dequeue.
break;
}
VPLOGF(1) << "ioctl() failed: input buffer VIDIOC_DQBUF failed.";
NotifyError(kInvalidBitstreamBufferId, PLATFORM_FAILURE);
return;
}
free_input_buffers_.push_back(dqbuf.index);
if (dqbuf.flags & V4L2_BUF_FLAG_ERROR) {
VLOGF(1) << "Error in dequeued input buffer.";
NotifyError(kInvalidBitstreamBufferId, PARSE_IMAGE_FAILED);
running_job_queue_.pop();
}
}
// Dequeue completed output (VIDEO_CAPTURE) buffers, recycle to the free list.
// Return the finished buffer to the client via the job ready callback.
// If dequeued input buffer has an error, the error frame has removed from
// |running_job_queue_|. We only have to dequeue output buffer when we
// actually have pending frames in |running_job_queue_| and also enqueued
// output buffers.
while (!running_job_queue_.empty() && OutputBufferQueuedCount() > 0) {
DCHECK(output_streamon_);
memset(&dqbuf, 0, sizeof(dqbuf));
memset(planes, 0, sizeof(planes));
dqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
dqbuf.memory = V4L2_MEMORY_DMABUF;
dqbuf.length = std::size(planes);
dqbuf.m.planes = planes;
if (device_->Ioctl(VIDIOC_DQBUF, &dqbuf) != 0) {
if (errno == EAGAIN) {
// EAGAIN if we're just out of buffers to dequeue.
break;
}
VPLOGF(1) << "ioctl() failed: output buffer VIDIOC_DQBUF failed.";
NotifyError(kInvalidBitstreamBufferId, PLATFORM_FAILURE);
return;
}
free_output_buffers_.push_back(dqbuf.index);
// Jobs are always processed in FIFO order.
std::unique_ptr<JobRecord> job_record =
std::move(running_job_queue_.front());
running_job_queue_.pop();
if (dqbuf.flags & V4L2_BUF_FLAG_ERROR) {
VLOGF(1) << "Error in dequeued output buffer.";
NotifyError(kInvalidBitstreamBufferId, PARSE_IMAGE_FAILED);
return;
}
size_t jpeg_size =
FinalizeJpegImage(job_record->output_frame, planes[0].bytesused,
std::move(job_record->exif_mapping));
if (!jpeg_size) {
NotifyError(job_record->task_id, PLATFORM_FAILURE);
return;
}
DVLOGF(4) << "Encoding finished, returning bitstream buffer, id="
<< job_record->task_id;
parent_->VideoFrameReady(job_record->task_id, jpeg_size);
}
}
void V4L2JpegEncodeAccelerator::EncodedInstanceDmaBuf::NotifyError(
int32_t task_id,
Status status) {
DCHECK_CALLED_ON_VALID_SEQUENCE(parent_->encoder_sequence_);
parent_->NotifyError(task_id, status);
}
V4L2JpegEncodeAccelerator::V4L2JpegEncodeAccelerator(
const scoped_refptr<base::SingleThreadTaskRunner>& io_task_runner)
: io_task_runner_(io_task_runner),
client_(nullptr),
weak_factory_for_encoder_(this),
weak_factory_(this) {
DCHECK(io_task_runner_->BelongsToCurrentThread());
DETACH_FROM_SEQUENCE(encoder_sequence_);
weak_ptr_ = weak_factory_.GetWeakPtr();
weak_ptr_for_encoder_ = weak_factory_for_encoder_.GetWeakPtr();
}
V4L2JpegEncodeAccelerator::~V4L2JpegEncodeAccelerator() {
DCHECK(io_task_runner_->BelongsToCurrentThread());
if (encoder_task_runner_) {
base::WaitableEvent waiter;
// base::Unretained(this) is safe because we wait DestroyTask() is done.
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2JpegEncodeAccelerator::DestroyTask,
base::Unretained(this), &waiter));
waiter.Wait();
}
weak_factory_.InvalidateWeakPtrs();
}
void V4L2JpegEncodeAccelerator::DestroyTask(base::WaitableEvent* waiter) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_);
while (!encoded_instances_dma_buf_.empty()) {
encoded_instances_dma_buf_.front()->DestroyTask();
encoded_instances_dma_buf_.pop();
}
weak_factory_for_encoder_.InvalidateWeakPtrs();
waiter->Signal();
}
void V4L2JpegEncodeAccelerator::VideoFrameReady(int32_t task_id,
size_t encoded_picture_size) {
if (!io_task_runner_->BelongsToCurrentThread()) {
io_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2JpegEncodeAccelerator::VideoFrameReady,
weak_ptr_, task_id, encoded_picture_size));
return;
}
VLOGF(1) << "Encoding finished task id=" << task_id
<< " Compressed size:" << encoded_picture_size;
client_->VideoFrameReady(task_id, encoded_picture_size);
}
void V4L2JpegEncodeAccelerator::NotifyError(int32_t task_id, Status status) {
if (!io_task_runner_->BelongsToCurrentThread()) {
io_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2JpegEncodeAccelerator::NotifyError,
weak_ptr_, task_id, status));
return;
}
VLOGF(1) << "Notifying of error " << status << " for task id " << task_id;
client_->NotifyError(task_id, status);
}
void V4L2JpegEncodeAccelerator::InitializeTask(
chromeos_camera::JpegEncodeAccelerator::Client* client,
chromeos_camera::JpegEncodeAccelerator::InitCB init_cb) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_);
auto encoded_device = std::make_unique<EncodedInstanceDmaBuf>(this);
// We just check if we can initialize device here.
if (!encoded_device->Initialize()) {
VLOGF(1) << "Failed to initialize device";
std::move(init_cb).Run(HW_JPEG_ENCODE_NOT_SUPPORTED);
return;
}
VLOGF(2) << "V4L2JpegEncodeAccelerator initialized.";
std::move(init_cb).Run(ENCODE_OK);
}
void V4L2JpegEncodeAccelerator::InitializeAsync(
chromeos_camera::JpegEncodeAccelerator::Client* client,
chromeos_camera::JpegEncodeAccelerator::InitCB init_cb) {
DCHECK(io_task_runner_->BelongsToCurrentThread());
client_ = client;
// base::WithBaseSyncPrimitives() and base::MayBlock() are necessary to
// synchronously destroy encoder variables on |encoder_task_runner_| in
// dedestructor.
encoder_task_runner_ = base::ThreadPool::CreateSequencedTaskRunner(
{base::TaskPriority::BEST_EFFORT, base::WithBaseSyncPrimitives(),
base::MayBlock()});
DCHECK(encoder_task_runner_);
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2JpegEncodeAccelerator::InitializeTask,
weak_ptr_for_encoder_, client,
base::BindPostTaskToCurrentDefault(std::move(init_cb))));
}
size_t V4L2JpegEncodeAccelerator::GetMaxCodedBufferSize(
const gfx::Size& picture_size) {
return picture_size.GetArea() * 3 / 2 + kJpegDefaultHeaderSize;
}
void V4L2JpegEncodeAccelerator::Encode(
scoped_refptr<media::VideoFrame> video_frame,
int quality,
BitstreamBuffer* exif_buffer,
BitstreamBuffer output_buffer) {
NOTIMPLEMENTED_LOG_ONCE();
}
void V4L2JpegEncodeAccelerator::EncodeWithDmaBuf(
scoped_refptr<VideoFrame> input_frame,
scoped_refptr<VideoFrame> output_frame,
int quality,
int32_t task_id,
BitstreamBuffer* exif_buffer) {
DCHECK(io_task_runner_->BelongsToCurrentThread());
if (quality <= 0 || quality > 100) {
VLOGF(1) << "quality is not in range. " << quality;
NotifyError(task_id, INVALID_ARGUMENT);
return;
}
if (input_frame->format() != VideoPixelFormat::PIXEL_FORMAT_NV12) {
VLOGF(1) << "Format is not NV12";
NotifyError(task_id, INVALID_ARGUMENT);
return;
}
base::WritableSharedMemoryMapping exif_mapping;
if (exif_buffer) {
VLOGF(4) << "EXIF size " << exif_buffer->size();
if (exif_buffer->size() > kMaxMarkerSizeAllowed) {
NotifyError(task_id, INVALID_ARGUMENT);
return;
}
base::UnsafeSharedMemoryRegion exif_region = exif_buffer->TakeRegion();
exif_mapping =
exif_region.MapAt(exif_buffer->offset(), exif_buffer->size());
if (!exif_mapping.IsValid()) {
VPLOGF(1) << "could not map exif bitstream_buffer";
NotifyError(task_id, PLATFORM_FAILURE);
return;
}
}
std::unique_ptr<JobRecord> job_record(new JobRecord(
input_frame, output_frame, quality, task_id, std::move(exif_mapping)));
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2JpegEncodeAccelerator::EncodeTask,
weak_ptr_for_encoder_, std::move(job_record)));
}
void V4L2JpegEncodeAccelerator::EncodeTask(
std::unique_ptr<JobRecord> job_record) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_);
// Check if the parameters of input frame changes.
// If it changes, we open a new device and put the job in it.
// If it doesn't change, we use the same device as last used.
gfx::Size coded_size = job_record->input_frame->coded_size();
if (latest_input_buffer_coded_size_ != coded_size ||
latest_quality_ != job_record->quality) {
std::unique_ptr<EncodedInstanceDmaBuf> encoded_device(
new EncodedInstanceDmaBuf(this));
VLOGF(1) << "Open Device for quality " << job_record->quality
<< ", width: " << coded_size.width()
<< ", height: " << coded_size.height();
if (!encoded_device->Initialize()) {
VLOGF(1) << "Failed to initialize device";
NotifyError(job_record->task_id, PLATFORM_FAILURE);
return;
}
if (!encoded_device->SetUpJpegParameters(job_record->quality, coded_size)) {
VLOGF(1) << "SetUpJpegParameters failed";
NotifyError(job_record->task_id, PLATFORM_FAILURE);
return;
}
// The output buffer size is coded in the first plane's size.
if (!encoded_device->CreateBuffers(
coded_size, job_record->input_frame->layout(),
job_record->output_frame->layout().planes()[0].size)) {
VLOGF(1) << "Create buffers failed.";
NotifyError(job_record->task_id, PLATFORM_FAILURE);
return;
}
latest_input_buffer_coded_size_ = coded_size;
latest_quality_ = job_record->quality;
encoded_instances_dma_buf_.push(std::move(encoded_device));
}
// Always use latest opened device for new job.
encoded_instances_dma_buf_.back()->input_job_queue_.push(
std::move(job_record));
ServiceDeviceTask();
}
void V4L2JpegEncodeAccelerator::ServiceDeviceTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_);
// Always service the first device to keep the input order.
encoded_instances_dma_buf_.front()->ServiceDevice();
// If we have more than 1 devices, we can remove the oldest one after all jobs
// finished.
if (encoded_instances_dma_buf_.size() > 1) {
if (encoded_instances_dma_buf_.front()->running_job_queue_.empty() &&
encoded_instances_dma_buf_.front()->input_job_queue_.empty()) {
encoded_instances_dma_buf_.pop();
}
}
if (!encoded_instances_dma_buf_.front()->running_job_queue_.empty() ||
!encoded_instances_dma_buf_.front()->input_job_queue_.empty()) {
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2JpegEncodeAccelerator::ServiceDeviceTask,
weak_ptr_for_encoder_));
}
}
} // namespace media