1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
media / gpu / v4l2 / v4l2_stateful_video_decoder.cc [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_stateful_video_decoder.h"
#include <fcntl.h>
#include <libdrm/drm_fourcc.h>
#include <poll.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include "base/containers/contains.h"
#include "base/containers/heap_array.h"
#include "base/files/file_util.h"
#include "base/location.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/histogram_macros.h"
#include "base/posix/eintr_wrapper.h"
#include "base/task/bind_post_task.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/thread_pool.h"
#include "base/trace_event/trace_event.h"
#include "media/base/media_log.h"
#include "media/base/media_switches.h"
#include "media/gpu/chromeos/video_frame_resource.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_framerate_control.h"
#include "media/gpu/v4l2/v4l2_queue.h"
#include "media/gpu/v4l2/v4l2_utils.h"
#include "media/parsers/h264_parser.h"
#include "third_party/abseil-cpp/absl/cleanup/cleanup.h"
#include "ui/gfx/geometry/size.h"
namespace {
// Numerical value of ioctl() OK return value;
constexpr int kIoctlOk = 0;
int HandledIoctl(int fd, int request, void* arg) {
return HANDLE_EINTR(ioctl(fd, request, arg));
}
void* Mmap(int fd,
void* addr,
unsigned int len,
int prot,
int flags,
unsigned int offset) {
return mmap(addr, len, prot, flags, fd, offset);
}
// This method blocks waiting for an event from either |device_fd| or
// |wake_event|; then if it's of the type POLLIN (meaning there's data) or
// POLLPRI (meaning a resolution change event) and from |device_fd|, this
// function calls |dequeue_callback| or |resolution_change_callback|,
// respectively. Since it blocks, it needs to work on its own
// SingleThreadTaskRunner, in this case |event_task_runner_|.
// TODO(mcasas): Add an error callback too.
void WaitOnceForEvents(int device_fd,
int wake_event,
base::OnceClosure dequeue_callback,
base::OnceClosure resolution_change_callback) {
VLOGF(5) << "Going to poll()";
// POLLERR, POLLHUP, or POLLNVAL are always return-able and anyway ignored
// when set in pollfd.events.
// https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/func-poll.html
struct pollfd pollfds[] = {{.fd = device_fd, .events = POLLIN | POLLPRI},
{.fd = wake_event, .events = POLLIN}};
constexpr int kInfiniteTimeout = -1;
if (HANDLE_EINTR(poll(pollfds, std::size(pollfds), kInfiniteTimeout)) <
kIoctlOk) {
PLOG(ERROR) << "Poll()ing for events failed";
return;
}
const auto events_from_device = pollfds[0].revents;
const auto other_events = pollfds[1].revents;
// At least Qualcomm Venus likes to bundle events.
const auto pollin_or_pollpri_event = events_from_device & (POLLIN | POLLPRI);
if (pollin_or_pollpri_event) {
// "POLLIN There is data to read."
// https://man7.org/linux/man-pages/man2/poll.2.html
if (events_from_device & POLLIN) {
std::move(dequeue_callback).Run();
}
// "If an event occurred (see ioctl VIDIOC_DQEVENT) then POLLPRI will be set
// in the revents field and poll() will return."
// https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/func-poll.html
if (events_from_device & POLLPRI) {
VLOGF(2) << "Resolution change event";
// Dequeue the event otherwise it'll be stuck in the driver forever.
struct v4l2_event event;
memset(&event, 0, sizeof(event)); // Must do: v4l2_event has a union.
if (HandledIoctl(device_fd, VIDIOC_DQEVENT, &event) != kIoctlOk) {
PLOG(ERROR) << "Failed dequeing an event";
return;
}
// If we get an event, it must be an V4L2_EVENT_SOURCE_CHANGE since it's
// the only one we're subscribed to.
DCHECK_EQ(event.type,
static_cast<unsigned int>(V4L2_EVENT_SOURCE_CHANGE));
DCHECK(event.u.src_change.changes & V4L2_EVENT_SRC_CH_RESOLUTION);
std::move(resolution_change_callback).Run();
}
return;
}
if (other_events & POLLIN) {
// Somebody woke us up because they didn't want us waiting on |device_fd|.
// Do nothing.
return;
}
// This could mean that |device_fd| has become invalid (closed, maybe);
// there's little we can do here.
// TODO(mcasas): Use the error callback to be added.
CHECK((events_from_device & (POLLERR | POLLHUP | POLLNVAL)) ||
(other_events & (POLLERR | POLLHUP | POLLNVAL)));
VLOG(2) << "Unhandled |events_from_device|: 0x" << std::hex
<< events_from_device << ", or |other_events|: 0x" << other_events;
}
// Lifted from the similarly named method in platform/drm-tests [1].
// ITU-T H.264 7.4.1.2.4 implementation. Assumes non-interlaced.
// [1] https://source.chromium.org/chromiumos/chromiumos/codesearch/+/main:src/platform/drm-tests/bitstreams/bitstream_helper_h264.c;l=72-104;drc=a094a84679084106598763d0a551ef33a9ad422b
bool IsNewH264Frame(const media::H264SPS* sps,
const media::H264PPS* pps,
const media::H264SliceHeader* prev_slice_header,
const media::H264SliceHeader* curr_slice_header) {
if (curr_slice_header->frame_num != prev_slice_header->frame_num ||
curr_slice_header->pic_parameter_set_id != pps->pic_parameter_set_id ||
curr_slice_header->nal_ref_idc != prev_slice_header->nal_ref_idc ||
curr_slice_header->idr_pic_flag != prev_slice_header->idr_pic_flag ||
(curr_slice_header->idr_pic_flag &&
(curr_slice_header->idr_pic_id != prev_slice_header->idr_pic_id ||
curr_slice_header->first_mb_in_slice == 0))) {
return true;
}
if (sps->pic_order_cnt_type == 0) {
if (curr_slice_header->pic_order_cnt_lsb !=
prev_slice_header->pic_order_cnt_lsb ||
curr_slice_header->delta_pic_order_cnt_bottom !=
prev_slice_header->delta_pic_order_cnt_bottom) {
return true;
}
} else if (sps->pic_order_cnt_type == 1) {
if (curr_slice_header->delta_pic_order_cnt0 !=
prev_slice_header->delta_pic_order_cnt0 ||
curr_slice_header->delta_pic_order_cnt1 !=
prev_slice_header->delta_pic_order_cnt1) {
return true;
}
}
return false;
}
// Concatenates |fragments| into a larger DecoderBuffer and empties |fragments|.
scoped_refptr<media::DecoderBuffer> ReassembleFragments(
std::vector<scoped_refptr<media::DecoderBuffer>>& fragments) {
size_t frame_size = 0;
for (const auto& fragment : fragments) {
frame_size += fragment->size();
}
auto temp_buffer = base::HeapArray<uint8_t>::Uninit(frame_size);
uint8_t* dst = temp_buffer.data();
for (const auto& fragment : fragments) {
memcpy(dst, fragment->data(), fragment->size());
dst += fragment->size();
}
auto reassembled_frame =
media::DecoderBuffer::FromArray(std::move(temp_buffer));
// Use the last fragment's timestamp as the |reassembled_frame|'s' timestamp.
reassembled_frame->set_timestamp(fragments.back()->timestamp());
fragments.clear();
return reassembled_frame;
}
} // namespace
namespace media {
// Stateful drivers need to be passed whole frames (see IsNewH264Frame() above).
// Some implementations (Hana MTK8173, but not Trogdor SC7180), don't support
// multiple whole frames enqueued in a single OUTPUT queue buffer. This class
// helps processing, slicing and gathering DecoderBuffers into full frames.
class H264FrameReassembler {
public:
H264FrameReassembler() = default;
~H264FrameReassembler() = default;
// Not copyable, not movable (move ctors will be implicitly deleted).
H264FrameReassembler(const H264FrameReassembler&) = delete;
H264FrameReassembler& operator=(const H264FrameReassembler&) = delete;
// This method parses |buffer| and decides whether it's part of a frame, it
// marks the beginning of a new frame, it's a full frame itself, or if it
// contains multiple frames. In any case, it might return a vector of
// DecoderBuffer + DecodeCB; if so, the caller can treat those as ready to be
// enqueued in the driver: this method will hold onto and reassemble
// fragments as needed. This method is guaranteed to return a vector. If a
// partial frame is not ready, only the DecodeCB associated with |buffer|
// will returned.
std::vector<std::pair<scoped_refptr<DecoderBuffer>, VideoDecoder::DecodeCB>>
Process(scoped_refptr<DecoderBuffer> buffer,
VideoDecoder::DecodeCB decode_cb);
// Used for End-of-Stream situations when a caller needs to reassemble
// explicitly (an EOS marks a frame boundary, we can't parse it).
scoped_refptr<DecoderBuffer> AssembleAndFlushFragments() {
return ReassembleFragments(frame_fragments_);
}
bool HasFragments() const { return !frame_fragments_.empty(); }
private:
// Data structure returned by FindH264FrameBoundary().
struct FrameBoundaryInfo {
// True if the NALU immediately before the boundary is a whole frame, e.g.
// an SPS, PPS, EOSeq or SEIMessage.
bool is_whole_frame;
// True if the NALU marks the beginning of a new frame (but itself isn't
// necessarily a whole frame, for that see |is_whole_frame|). This implies
// that any previously buffered fragments/slices can be reassembled into a
// whole frame.
bool is_start_of_new_frame;
// Size in bytes of the NALU under analysis.
off_t nalu_size;
};
// Parses |data| and returns either std::nullopt, if parsing |data| fails, or
// a FrameBoundaryInfo describing the first |nalu_size| bytes of |data|.
//
// It is assumed that |data| contains an integer number of NALUs.
std::optional<struct FrameBoundaryInfo> FindH264FrameBoundary(
const uint8_t* const data,
size_t size);
H264Parser h264_parser_;
static constexpr int kInvalidSPS = -1;
int sps_id_ = kInvalidSPS;
static constexpr int kInvalidPPS = -1;
int pps_id_ = kInvalidPPS;
std::unique_ptr<H264SliceHeader> previous_slice_header_;
std::vector<scoped_refptr<DecoderBuffer>> frame_fragments_;
};
// static
base::AtomicRefCount V4L2StatefulVideoDecoder::num_decoder_instances_(0);
// static
std::unique_ptr<VideoDecoderMixin> V4L2StatefulVideoDecoder::Create(
std::unique_ptr<MediaLog> media_log,
scoped_refptr<base::SequencedTaskRunner> task_runner,
base::WeakPtr<VideoDecoderMixin::Client> client) {
DCHECK(task_runner->RunsTasksInCurrentSequence());
DCHECK(client);
return base::WrapUnique<VideoDecoderMixin>(new V4L2StatefulVideoDecoder(
std::move(media_log), std::move(task_runner), std::move(client)));
}
void V4L2StatefulVideoDecoder::Initialize(const VideoDecoderConfig& config,
bool /*low_delay*/,
CdmContext* cdm_context,
InitCB init_cb,
const PipelineOutputCB& output_cb,
const WaitingCB& /*waiting_cb*/) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(config.IsValidConfig());
DVLOGF(1) << config.AsHumanReadableString();
if (config.is_encrypted() || !!cdm_context) {
std::move(init_cb).Run(DecoderStatus::Codes::kUnsupportedEncryptionMode);
return;
}
// Verify there's still room for more decoders before querying whether
// |config| is supported because some drivers (e.g. Qualcomm Venus on SC7180)
// would not allow for opening the device fd and we'd think it an error.
static const auto decoder_instances_limit =
V4L2StatefulVideoDecoder::GetMaxNumDecoderInstances();
const bool can_create_decoder =
num_decoder_instances_.Increment() < decoder_instances_limit;
if (!can_create_decoder) {
num_decoder_instances_.Decrement();
LOG(ERROR) << "Too many decoder instances, max=" << decoder_instances_limit;
std::move(init_cb).Run(DecoderStatus::Codes::kTooManyDecoders);
return;
}
if (supported_configs_.empty()) {
supported_configs_ = GetSupportedV4L2DecoderConfigs().value_or(
SupportedVideoDecoderConfigs());
DCHECK(!supported_configs_.empty());
}
// Make sure that the |config| requested is supported by the driver,
// which must provide such information.
if (!IsVideoDecoderConfigSupported(supported_configs_, config)) {
VLOGF(1) << "Video configuration is not supported: "
<< config.AsHumanReadableString();
MEDIA_LOG(INFO, media_log_) << "Video configuration is not supported: "
<< config.AsHumanReadableString();
std::move(init_cb).Run(DecoderStatus::Codes::kUnsupportedConfig);
return;
}
if (!device_fd_.is_valid()) {
constexpr char kVideoDeviceDriverPath[] = "/dev/video-dec0";
device_fd_.reset(HANDLE_EINTR(
open(kVideoDeviceDriverPath, O_RDWR | O_NONBLOCK | O_CLOEXEC)));
if (!device_fd_.is_valid()) {
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
wake_event_.reset(eventfd(/*initval=*/0, EFD_NONBLOCK | EFD_CLOEXEC));
if (!wake_event_.is_valid()) {
PLOG(ERROR) << "Failed to create an eventfd.";
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
struct v4l2_capability caps = {};
if (HandledIoctl(device_fd_.get(), VIDIOC_QUERYCAP, &caps) != kIoctlOk) {
PLOG(ERROR) << "Failed querying caps";
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
is_mtk8173_ = base::Contains(
std::string(reinterpret_cast<const char*>(caps.card)), "8173");
DVLOGF_IF(1, is_mtk8173_) << "This is an MTK8173 device (Hana, Oak)";
}
if (IsInitialized()) {
// Almost always we'll be here when the MSE feeding the HTML <video> changes
// tracks; this is implemented via a flush (a Decode() call with an
// end_of_stream() DecoderBuffer) and then this very Initialize() call.
// Technically, a V4L2 Memory-to-Memory stateful decoder can start decoding
// after a flush ("Drain" in the V4L2 documentation) via either a START
// command or sending a VIDIOC_STREAMOFF - VIDIOC_STREAMON to either queue
// [1]. The START command is what we issue when seeing the LAST dequeued
// CAPTURE buffer, but this is not enough for Hana MTK8173, so we issue a
// full stream off here (see crbug.com/270039 for historical context).
// [1] https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/dev-decoder.html#drain
// There should be no pending work.
DCHECK(decoder_buffer_and_callbacks_.empty());
// Invalidate pointers from and cancel all hypothetical in-flight requests
// to the WaitOnceForEvents() routine.
weak_ptr_factory_for_events_.InvalidateWeakPtrs();
weak_ptr_factory_for_CAPTURE_availability_.InvalidateWeakPtrs();
cancelable_task_tracker_.TryCancelAll();
encoding_timestamps_.clear();
if (OUTPUT_queue_ && !OUTPUT_queue_->Streamoff()) {
LOG(ERROR) << "Failed to stop (VIDIOC_STREAMOFF) |OUTPUT_queue_|.";
}
if (CAPTURE_queue_ && !CAPTURE_queue_->Streamoff()) {
LOG(ERROR) << "Failed to stop (VIDIOC_STREAMOFF) |CAPTURE_queue_|.";
}
}
framerate_control_ = std::make_unique<V4L2FrameRateControl>(
base::BindRepeating(&HandledIoctl, device_fd_.get()),
base::SequencedTaskRunner::GetCurrentDefault());
// At this point we initialize the |OUTPUT_queue_| only, following
// instructions in e.g. [1]. The decoded video frames queue configuration
// must wait until there are enough encoded chunks fed into said
// |OUTPUT_queue_| for the driver to know the output details. The driver will
// let us know that moment via a V4L2_EVENT_SOURCE_CHANGE.
// [1] https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/dev-decoder.html#initialization
OUTPUT_queue_ = base::WrapRefCounted(new V4L2Queue(
base::BindRepeating(&HandledIoctl, device_fd_.get()),
/*schedule_poll_cb=*/base::DoNothing(),
/*mmap_cb=*/base::BindRepeating(&Mmap, device_fd_.get()),
AllocateSecureBufferAsCallback(), V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
/*destroy_cb=*/base::DoNothing()));
const auto profile_as_v4l2_fourcc =
VideoCodecProfileToV4L2PixFmt(config.profile(), /*slice_based=*/false);
// Allocate larger |OUTPUT_queue_| buffers for resolutions above 1080p.
// TODO(hnt): Investigate ways to reduce this size.
constexpr size_t kMiB = 1024 * 1024;
constexpr int kFullHDNumPixels = 1920 * 1080;
const size_t kInputBufferInMBs =
(config.coded_size().GetArea() <= kFullHDNumPixels) ? 2 : 4;
const auto v4l2_format = OUTPUT_queue_->SetFormat(
profile_as_v4l2_fourcc, gfx::Size(), kInputBufferInMBs * kMiB);
if (!v4l2_format) {
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
DCHECK_EQ(v4l2_format->fmt.pix_mp.pixelformat, profile_as_v4l2_fourcc);
const bool is_h264 =
VideoCodecProfileToVideoCodec(config.profile()) == VideoCodec::kH264;
constexpr size_t kNumInputBuffersH264 = 16;
constexpr size_t kNumInputBuffersVPx = 2;
const auto num_input_buffers =
is_h264 ? kNumInputBuffersH264 : kNumInputBuffersVPx;
if (OUTPUT_queue_->AllocateBuffers(num_input_buffers, V4L2_MEMORY_MMAP,
/*incoherent=*/false) <
num_input_buffers) {
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
if (!OUTPUT_queue_->Streamon()) {
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
client_->NotifyEstimatedMaxDecodeRequests(base::checked_cast<int>(
std::min(static_cast<size_t>(4), num_input_buffers)));
// Subscribe to the resolution change event. This is needed for resolution
// changes mid stream but also to initialize the |CAPTURE_queue|.
struct v4l2_event_subscription sub = {.type = V4L2_EVENT_SOURCE_CHANGE};
if (HandledIoctl(device_fd_.get(), VIDIOC_SUBSCRIBE_EVENT, &sub) !=
kIoctlOk) {
PLOG(ERROR) << "Failed to subscribe to V4L2_EVENT_SOURCE_CHANGE";
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
config_ = config;
output_cb_ = std::move(output_cb);
if (is_h264) {
h264_frame_reassembler_ = std::make_unique<H264FrameReassembler>();
}
std::move(init_cb).Run(DecoderStatus::Codes::kOk);
}
void V4L2StatefulVideoDecoder::Decode(scoped_refptr<DecoderBuffer> buffer,
DecodeCB decode_cb) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
VLOGF(3) << buffer->AsHumanReadableString(/*verbose=*/false);
if (!IsInitialized()) {
DecoderStatus init_result;
Initialize(
config_, /*low_delay=*/false, /*cdm_context=*/nullptr,
base::BindOnce([](DecoderStatus* out, DecoderStatus in) { *out = in; },
&init_result),
output_cb_,
/*waiting_cb=*/base::DoNothing());
if (!init_result.is_ok()) {
// Destroy output queue so IsInitialized() return false.
OUTPUT_queue_.reset();
std::move(decode_cb).Run(init_result);
return;
}
}
if (buffer->end_of_stream()) {
if (!event_task_runner_) {
// Receiving Flush before any "normal" Decode() calls. This is a bit of a
// contrived situation but possible, nonetheless ,and also a test case.
std::move(decode_cb).Run(DecoderStatus::Codes::kOk);
return;
}
if (h264_frame_reassembler_ && h264_frame_reassembler_->HasFragments()) {
decoder_buffer_and_callbacks_.emplace(
h264_frame_reassembler_->AssembleAndFlushFragments(),
base::DoNothing());
TryAndEnqueueOUTPUTQueueBuffers();
}
const bool is_pending_work = !decoder_buffer_and_callbacks_.empty();
const bool decoding = !!CAPTURE_queue_;
if (is_pending_work || !decoding) {
// We still have |buffer|s that haven't been enqueued in |OUTPUT_queue_|,
// or we're not decoding yet; if we were to SendStopCommand(), they would
// not be processed. So let's store the end_of_stream() |buffer| for
// later processing.
decoder_buffer_and_callbacks_.emplace(std::move(buffer),
std::move(decode_cb));
return;
}
if (!OUTPUT_queue_->SendStopCommand()) {
std::move(decode_cb).Run(DecoderStatus::Codes::kFailed);
return;
}
RearmCAPTUREQueueMonitoring();
flush_cb_ = std::move(decode_cb);
return;
}
PrintAndTraceQueueStates(FROM_HERE);
if (VideoCodecProfileToVideoCodec(config_.profile()) == VideoCodec::kH264) {
auto processed_buffer_and_decode_cbs = h264_frame_reassembler_->Process(
std::move(buffer), std::move(decode_cb));
// If Process() returns nothing, then it swallowed its arguments and
// there's nothing further to do. Otherwise, just treat whatever it
// returned as a normal sequence of DecoderBuffer + DecodeCB.
if (processed_buffer_and_decode_cbs.empty()) {
return;
}
for (auto& a : processed_buffer_and_decode_cbs) {
decoder_buffer_and_callbacks_.push(std::move(a));
}
} else if (VideoCodecProfileToVideoCodec(config_.profile()) ==
VideoCodec::kHEVC) {
NOTIMPLEMENTED();
std::move(decode_cb).Run(DecoderStatus::Codes::kUnsupportedCodec);
return;
} else {
decoder_buffer_and_callbacks_.emplace(std::move(buffer),
std::move(decode_cb));
}
if (!TryAndEnqueueOUTPUTQueueBuffers()) {
// All accepted entries in |decoder_buffer_and_callbacks_| must have had
// their |decode_cb|s Run() from inside TryAndEnqueueOUTPUTQueueBuffers().
return;
}
if (!event_task_runner_) {
CHECK(!CAPTURE_queue_); // It's the first configuration event.
// |event_task_runner_| will block on OS resources, so it has to be a full
// ThreadRunner ISO a SequencedTaskRunner, to avoid interfering with other
// runners of the pool.
event_task_runner_ = base::ThreadPool::CreateSingleThreadTaskRunner(
{base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN},
base::SingleThreadTaskRunnerThreadMode::DEDICATED);
CHECK(event_task_runner_);
}
RearmCAPTUREQueueMonitoring();
}
void V4L2StatefulVideoDecoder::Reset(base::OnceClosure closure) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOGF(2);
// In order to preserve the order of the callbacks between Decode() and
// Reset(), we also trampoline |closure|.
absl::Cleanup scoped_trampoline_reset = [closure =
std::move(closure)]() mutable {
base::SequencedTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, std::move(closure));
};
// Invalidate pointers from and cancel all hypothetical in-flight requests
// to the WaitOnceForEvents() routine.
weak_ptr_factory_for_events_.InvalidateWeakPtrs();
weak_ptr_factory_for_CAPTURE_availability_.InvalidateWeakPtrs();
cancelable_task_tracker_.TryCancelAll();
if (h264_frame_reassembler_) {
h264_frame_reassembler_ = std::make_unique<H264FrameReassembler>();
}
// Signal any pending work as kAborted.
while (!decoder_buffer_and_callbacks_.empty()) {
auto media_decode_cb =
std::move(decoder_buffer_and_callbacks_.front().second);
decoder_buffer_and_callbacks_.pop();
std::move(media_decode_cb).Run(DecoderStatus::Codes::kAborted);
}
OUTPUT_queue_.reset();
CAPTURE_queue_.reset();
device_fd_.reset();
event_task_runner_.reset();
num_decoder_instances_.Decrement();
encoding_timestamps_.clear();
if (flush_cb_) {
std::move(flush_cb_).Run(DecoderStatus::Codes::kAborted);
}
}
bool V4L2StatefulVideoDecoder::NeedsBitstreamConversion() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
bool V4L2StatefulVideoDecoder::CanReadWithoutStalling() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
int V4L2StatefulVideoDecoder::GetMaxDecodeRequests() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
VideoDecoderType V4L2StatefulVideoDecoder::GetDecoderType() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
bool V4L2StatefulVideoDecoder::IsPlatformDecoder() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
void V4L2StatefulVideoDecoder::ApplyResolutionChange() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOGF(2);
// It's possible that we have been Reset()ed in the interval between receiving
// the resolution change event in WaitOnceForEvents() (in a background thread)
// and arriving here from our |client_|. Check if that's the case.
if (IsInitialized())
InitializeCAPTUREQueue();
}
size_t V4L2StatefulVideoDecoder::GetMaxOutputFramePoolSize() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// VIDEO_MAX_FRAME is used as a size in V4L2 decoder drivers like Qualcomm
// Venus. We should not exceed this limit for the frame pool that the decoder
// writes into.
return VIDEO_MAX_FRAME;
}
void V4L2StatefulVideoDecoder::SetDmaIncoherentV4L2(bool incoherent) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTIMPLEMENTED();
}
V4L2StatefulVideoDecoder::V4L2StatefulVideoDecoder(
std::unique_ptr<MediaLog> media_log,
scoped_refptr<base::SequencedTaskRunner> task_runner,
base::WeakPtr<VideoDecoderMixin::Client> client)
: VideoDecoderMixin(std::move(media_log),
std::move(task_runner),
std::move(client)),
weak_ptr_factory_for_events_(this),
weak_ptr_factory_for_CAPTURE_availability_(this) {
DCHECK(decoder_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOGF(1);
}
V4L2StatefulVideoDecoder::~V4L2StatefulVideoDecoder() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOGF(1);
weak_ptr_factory_for_events_.InvalidateWeakPtrs();
weak_ptr_factory_for_CAPTURE_availability_.InvalidateWeakPtrs();
cancelable_task_tracker_.TryCancelAll(); // Not needed, but good explicit.
if (wake_event_.is_valid()) {
const uint64_t buf = 1;
const auto res = HANDLE_EINTR(write(wake_event_.get(), &buf, sizeof(buf)));
PLOG_IF(ERROR, res < 0) << "Error writing to |wake_event_|";
}
CAPTURE_queue_.reset();
OUTPUT_queue_.reset();
num_decoder_instances_.Decrement();
if (event_task_runner_) {
// Destroy the two ScopedFDs (hence the PostTask business ISO DeleteSoon) on
// |event_task_runner_| for proper teardown threading. This must be the last
// operation in the destructor and after having explicitly destroyed other
// objects that might use |device_fd|.
event_task_runner_->PostTask(
FROM_HERE,
base::BindOnce([](base::ScopedFD fd) {}, std::move(device_fd_)));
event_task_runner_->PostTask(
FROM_HERE,
base::BindOnce([](base::ScopedFD fd) {}, std::move(wake_event_)));
}
}
bool V4L2StatefulVideoDecoder::InitializeCAPTUREQueue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(IsInitialized()) << "V4L2StatefulVideoDecoder must be Initialize()d";
CAPTURE_queue_ = base::WrapRefCounted(new V4L2Queue(
base::BindRepeating(&HandledIoctl, device_fd_.get()),
/*schedule_poll_cb=*/base::DoNothing(),
/*mmap_cb=*/base::BindRepeating(&Mmap, device_fd_.get()),
AllocateSecureBufferAsCallback(), V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
/*destroy_cb=*/base::DoNothing()));
const auto v4l2_format_or_error = CAPTURE_queue_->GetFormat();
if (!v4l2_format_or_error.first || v4l2_format_or_error.second != kIoctlOk) {
return false;
}
const struct v4l2_format v4l2_format = *(v4l2_format_or_error.first);
VLOG(3) << "Out-of-the-box |CAPTURE_queue_| configuration: "
<< V4L2FormatToString(v4l2_format);
const gfx::Size coded_size(v4l2_format.fmt.pix_mp.width,
v4l2_format.fmt.pix_mp.height);
std::vector<ImageProcessor::PixelLayoutCandidate> candidates =
EnumeratePixelLayoutCandidates(coded_size);
// |visible_rect| is a subset of |coded_size| and represents the "natural"
// size of the video, e.g. a 1080p sequence could have 1920x1080 "natural" or
// |visible_rect|, but |coded_size| of 1920x1088 because of codec block
// alignment of 16 samples.
std::optional<gfx::Rect> visible_rect = CAPTURE_queue_->GetVisibleRect();
if (!visible_rect) {
return false;
}
CHECK(gfx::Rect(coded_size).Contains(*visible_rect));
visible_rect_ = *visible_rect;
const auto num_codec_reference_frames = GetNumberOfReferenceFrames();
// Ask the pipeline to pick the output format from |CAPTURE_queue_|'s
// |candidates|. If needed, it will try to instantiate an ImageProcessor.
CroStatus::Or<ImageProcessor::PixelLayoutCandidate> status_or_output_format =
client_->PickDecoderOutputFormat(
candidates, *visible_rect,
config_.aspect_ratio().GetNaturalSize(*visible_rect),
/*output_size=*/std::nullopt, num_codec_reference_frames,
/*use_protected=*/false, /*need_aux_frame_pool=*/false,
/*allocator=*/std::nullopt);
if (!status_or_output_format.has_value()) {
return false;
}
const ImageProcessor::PixelLayoutCandidate output_format =
std::move(status_or_output_format).value();
auto chosen_fourcc = output_format.fourcc;
const auto chosen_size = output_format.size;
const auto chosen_modifier = output_format.modifier;
// If our |client_| has a VideoFramePool to allocate buffers for us, we'll
// use it, otherwise we have to ask the driver.
const bool use_v4l2_allocated_buffers = !client_->GetVideoFramePool();
const v4l2_memory buffer_type =
use_v4l2_allocated_buffers ? V4L2_MEMORY_MMAP : V4L2_MEMORY_DMABUF;
// If we don't |use_v4l2_allocated_buffers|, request as many as possible
// (VIDEO_MAX_FRAME) since they are shallow allocations. Otherwise, allocate
// |num_codec_reference_frames| plus one for the video frame being decoded,
// and one for our client (presumably |client_|s ImageProcessor).
const size_t v4l2_num_buffers = use_v4l2_allocated_buffers
? num_codec_reference_frames + 2
: VIDEO_MAX_FRAME;
if (!use_v4l2_allocated_buffers) {
std::optional<GpuBufferLayout> layout =
client_->GetVideoFramePool()->GetGpuBufferLayout();
if (!layout.has_value()) {
return false;
}
if (layout->modifier() == DRM_FORMAT_MOD_QCOM_COMPRESSED) {
// V4L2 has no API to set DRM modifiers; instead we translate here to
// the corresponding V4L2 pixel format.
if (!CAPTURE_queue_
->SetFormat(V4L2_PIX_FMT_QC08C, chosen_size, /*buffer_size=*/0)
.has_value()) {
return false;
}
chosen_fourcc = Fourcc::FromV4L2PixFmt(V4L2_PIX_FMT_QC08C).value();
}
}
VLOG(2) << "Chosen |CAPTURE_queue_| format: " << chosen_fourcc.ToString()
<< " " << chosen_size.ToString() << " (modifier: 0x" << std::hex
<< chosen_modifier << std::dec << "). Using " << v4l2_num_buffers
<< " |CAPTURE_queue_| slots.";
const auto allocated_buffers = CAPTURE_queue_->AllocateBuffers(
v4l2_num_buffers, buffer_type, /*incoherent=*/false);
if (allocated_buffers < v4l2_num_buffers) {
LOGF(ERROR) << "Failed to allocate enough CAPTURE buffers, requested= "
<< v4l2_num_buffers << " actual= " << allocated_buffers;
return false;
}
if (!CAPTURE_queue_->Streamon()) {
return false;
}
// We need to "enqueue" allocated buffers in the driver in order to use them.
TryAndEnqueueCAPTUREQueueBuffers();
TryAndEnqueueOUTPUTQueueBuffers();
RearmCAPTUREQueueMonitoring();
return true;
}
std::vector<ImageProcessor::PixelLayoutCandidate>
V4L2StatefulVideoDecoder::EnumeratePixelLayoutCandidates(
const gfx::Size& coded_size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(CAPTURE_queue_) << "|CAPTURE_queue_| must be created at this point";
const auto v4l2_pix_fmts = EnumerateSupportedPixFmts(
base::BindRepeating(&HandledIoctl, device_fd_.get()),
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
std::vector<ImageProcessor::PixelLayoutCandidate> candidates;
for (const uint32_t& pixfmt : v4l2_pix_fmts) {
const auto candidate_fourcc = Fourcc::FromV4L2PixFmt(pixfmt);
if (!candidate_fourcc) {
continue; // This is fine: means we don't recognize |candidate_fourcc|.
}
// TODO(mcasas): Consider what to do when the input bitstream is of higher
// bit depth: Some drivers (QC?) will support and enumerate both a high bit
// depth and a low bit depth pixel formats. We'd like to choose the higher
// bit depth and let Chrome's display pipeline decide what to do.
candidates.emplace_back(ImageProcessor::PixelLayoutCandidate{
.fourcc = *candidate_fourcc, .size = coded_size});
VLOG(2) << "CAPTURE queue candidate format: "
<< candidate_fourcc->ToString() << ", " << coded_size.ToString();
}
return candidates;
}
size_t V4L2StatefulVideoDecoder::GetNumberOfReferenceFrames() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(CAPTURE_queue_) << "|CAPTURE_queue_| must be created at this point";
// Estimate the number of buffers needed for the |CAPTURE_queue_| and for
// codec reference requirements. For VP9 and AV1, the maximum number of
// reference frames is constant and 8 (for VP8 is 4); for H.264 and other
// ITU-T codecs, it depends on the bitstream. Here we query it from the
// driver anyway.
constexpr size_t kDefaultNumReferenceFrames = 8;
constexpr size_t kDefaultNumReferenceFramesMTK8173 = 16;
size_t num_codec_reference_frames = is_mtk8173_
? kDefaultNumReferenceFramesMTK8173
: kDefaultNumReferenceFrames;
struct v4l2_ext_control ctrl = {.id = V4L2_CID_MIN_BUFFERS_FOR_CAPTURE};
struct v4l2_ext_controls ext_ctrls = {.count = 1, .controls = &ctrl};
if (HandledIoctl(device_fd_.get(), VIDIOC_G_EXT_CTRLS, &ext_ctrls) ==
kIoctlOk) {
num_codec_reference_frames = std::max(
base::checked_cast<size_t>(ctrl.value), num_codec_reference_frames);
}
VLOG(2) << "Driver wants: " << ctrl.value
<< " CAPTURE buffers. We'll use: " << num_codec_reference_frames;
// Verify |num_codec_reference_frames| has a reasonable value. Anecdotally 18
// is the largest amount of reference frames seen, on some ITU-T H.264 test
// vectors (e.g. CABA1_SVA_B.h264).
CHECK_LE(num_codec_reference_frames, 18u);
return num_codec_reference_frames;
}
void V4L2StatefulVideoDecoder::RearmCAPTUREQueueMonitoring() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
auto dequeue_callback = base::BindPostTaskToCurrentDefault(base::BindOnce(
&V4L2StatefulVideoDecoder::TryAndDequeueCAPTUREQueueBuffers,
weak_ptr_factory_for_events_.GetWeakPtr()));
// |client_| needs to be told of a hypothetical resolution change (to wait for
// frames in flight etc). Once that's done they will ping us via
// ApplyResolutionChange(). We use a trampoline lambda to make sure
// |weak_ptr_factory_for_events_|'s pointers have not been invalidated (e.g.
// by a Reset()).
auto resolution_change_callback =
base::BindPostTaskToCurrentDefault(base::BindOnce(
[](base::WeakPtr<VideoDecoderMixin::Client> client,
base::WeakPtr<V4L2StatefulVideoDecoder> weak_this) {
if (weak_this && client) {
client->PrepareChangeResolution();
}
},
client_, weak_ptr_factory_for_events_.GetWeakPtr()));
// Here we launch a single "wait for a |CAPTURE_queue_| event" monitoring
// Task (via an infinite-wait POSIX poll()). It lives on a background
// SequencedTaskRunner whose lifetime we don't control (comes from a pool), so
// it can outlive this class -- this is fine, however, because upon
// V4L2StatefulVideoDecoder destruction:
// - |cancelable_task_tracker_| is used to try to drop all such Tasks that
// have not been serviced.
// - Any WeakPtr used for WaitOnceForEvents() callbacks will be invalidated
// (in particular, |client_| is a WeakPtr).
// - A |wake_event_| is sent to break a hypothetical poll() wait;
// WaitOnceForEvents() should return immediately upon this happening.
// (|wake_event_| is needed because we cannot rely on POSIX to wake a
// thread that is blocked on a poll() upon the closing of an FD from a
// different thread, concretely the "result is unspecified").
// - Both |device_fd_| and |wake_event_| are posted for destruction on said
// background SingleThreadTaskRunner so that the FDs monitored by poll() are
// guaranteed to stay alive until poll() returns, thus avoiding unspecified
// behavior.
cancelable_task_tracker_.PostTask(
event_task_runner_.get(), FROM_HERE,
base::BindOnce(&WaitOnceForEvents, device_fd_.get(), wake_event_.get(),
std::move(dequeue_callback),
std::move(resolution_change_callback)));
}
void V4L2StatefulVideoDecoder::TryAndDequeueCAPTUREQueueBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(CAPTURE_queue_) << "|CAPTURE_queue_| must be created at this point";
const v4l2_memory queue_type = CAPTURE_queue_->GetMemoryType();
DCHECK(queue_type == V4L2_MEMORY_MMAP || queue_type == V4L2_MEMORY_DMABUF);
const bool use_v4l2_allocated_buffers = !client_->GetVideoFramePool();
DCHECK((queue_type == V4L2_MEMORY_MMAP && use_v4l2_allocated_buffers) ||
(queue_type == V4L2_MEMORY_DMABUF && !use_v4l2_allocated_buffers));
bool success;
scoped_refptr<V4L2ReadableBuffer> dequeued_buffer;
for (std::tie(success, dequeued_buffer) = CAPTURE_queue_->DequeueBuffer();
success && dequeued_buffer;
std::tie(success, dequeued_buffer) = CAPTURE_queue_->DequeueBuffer()) {
PrintAndTraceQueueStates(FROM_HERE);
const int64_t flat_timespec =
TimeValToTimeDelta(dequeued_buffer->GetTimeStamp()).InMilliseconds();
if (base::Contains(encoding_timestamps_, flat_timespec)) {
UMA_HISTOGRAM_TIMES(
"Media.PlatformVideoDecoding.Decode",
base::TimeTicks::Now() - encoding_timestamps_[flat_timespec]);
encoding_timestamps_.erase(flat_timespec);
}
// A buffer marked "last" indicates the end of a flush. Note that, according
// to spec, this buffer may or may not have zero |bytesused|.
// https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/dev-decoder.html#drain
if (dequeued_buffer->IsLast()) {
VLOGF(3) << "Buffer marked LAST in |CAPTURE_queue_|";
// Make sure the |OUTPUT_queue_| is really empty before restarting.
if (!DrainOUTPUTQueue()) {
LOG(ERROR) << "Failed to drain resources from |OUTPUT_queue_|.";
}
// According to the spec, decoding can be restarted either sending a
// "V4L2_DEC_CMD_START - the decoder will not be reset and will resume
// operation normally, with all the state from before the drain," or
// sending a VIDIOC_STREAMOFF - VIDIOC_STREAMON to either queue. Since we
// want to keep the state (e.g. resolution, |client_| buffers), we try
// the first option.
if (!CAPTURE_queue_->SendStartCommand()) {
VLOGF(3) << "Failed to resume decoding after flush";
// TODO(mcasas): Handle this error.
}
// In some cases we still have enqueued work in |OUTPUT_queue_| after
// seeing the LAST buffer. This happens at least when there's a pending
// resolution change (see vp80-03-segmentation-1436.ivf), that according
// to [1] must be processed first.
// [1] https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/dev-decoder.html#drain
const bool has_pending_OUTPUT_queue_work =
OUTPUT_queue_->QueuedBuffersCount();
if (flush_cb_ && !has_pending_OUTPUT_queue_work) {
std::move(flush_cb_).Run(DecoderStatus::Codes::kOk);
}
return;
} else if (!dequeued_buffer->IsError()) {
// IsError() doesn't flag a fatal error, but more a discard-this-buffer
// marker. This is seen -seldom- from venus driver (QC) when entering a
// dynamic resolution mode: the driver flushes the queue with errored
// buffers before sending the IsLast() buffer.
scoped_refptr<FrameResource> frame = dequeued_buffer->GetFrameResource();
CHECK(frame);
frame->set_timestamp(TimeValToTimeDelta(dequeued_buffer->GetTimeStamp()));
frame->set_color_space(config_.color_space_info().ToGfxColorSpace());
frame->set_hdr_metadata(config_.hdr_metadata());
// For a V4L2_MEMORY_MMAP |CAPTURE_queue_| we wrap |frame| to return
// |dequeued_buffer| to |CAPTURE_queue_|, where they are "pooled". For a
// V4L2_MEMORY_DMABUF |CAPTURE_queue_|, we don't do that because the
// VideoFrames are pooled in |client_|s;
// TryAndEnqueueCAPTUREQueueBuffers() will find them there.
if (queue_type == V4L2_MEMORY_MMAP) {
// Don't query |CAPTURE_queue_|'s GetVisibleRect() here because it races
// with hypothetical resolution changes.
CHECK(gfx::Rect(frame->coded_size()).Contains(visible_rect_));
CHECK(frame->visible_rect().Contains(visible_rect_));
auto wrapped_frame =
frame->CreateWrappingFrame(visible_rect_,
/*natural_size=*/visible_rect_.size());
// Make sure |dequeued_buffer| stays alive and its reference released as
// |wrapped_frame| is destroyed, allowing -maybe- for it to get back to
// |CAPTURE_queue_|s free buffers.
wrapped_frame->AddDestructionObserver(
base::BindPostTaskToCurrentDefault(base::BindOnce(
[](scoped_refptr<V4L2ReadableBuffer> buffer,
base::WeakPtr<V4L2StatefulVideoDecoder> weak_this) {
// See also TryAndEnqueueCAPTUREQueueBuffers(), V4L2Queue is
// funny: We need to "enqueue" released buffers in the driver
// in order to use them (otherwise they would stay as "free").
if (weak_this) {
weak_this->TryAndEnqueueCAPTUREQueueBuffers();
weak_this->PrintAndTraceQueueStates(FROM_HERE);
}
},
std::move(dequeued_buffer),
weak_ptr_factory_for_CAPTURE_availability_.GetWeakPtr())));
CHECK(wrapped_frame);
VLOGF(3) << wrapped_frame->AsHumanReadableString();
output_cb_.Run(std::move(wrapped_frame));
} else {
DCHECK_EQ(queue_type, V4L2_MEMORY_DMABUF);
VLOGF(3) << frame->AsHumanReadableString();
framerate_control_->AttachToFrameResource(frame);
output_cb_.Run(std::move(frame));
}
// We just dequeued one decoded |frame|; try to reclaim |OUTPUT_queue|
// resources that might just have been released.
if (!DrainOUTPUTQueue()) {
LOG(ERROR) << "Failed to drain resources from |OUTPUT_queue_|.";
}
}
}
LOG_IF(ERROR, !success) << "Failed dequeueing from |CAPTURE_queue_|";
// Not an error if |dequeued_buffer| is empty, it's just an empty queue.
// There might be available resources for |CAPTURE_queue_| from previous
// cycles; try and make them available for the driver.
TryAndEnqueueCAPTUREQueueBuffers();
TryAndEnqueueOUTPUTQueueBuffers();
RearmCAPTUREQueueMonitoring();
}
void V4L2StatefulVideoDecoder::TryAndEnqueueCAPTUREQueueBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(CAPTURE_queue_) << "|CAPTURE_queue_| must be created at this point";
const v4l2_memory queue_type = CAPTURE_queue_->GetMemoryType();
DCHECK(queue_type == V4L2_MEMORY_MMAP || queue_type == V4L2_MEMORY_DMABUF);
// V4L2Queue is funny because even though it might have "free" buffers, the
// user (i.e. this code) needs to "enqueue" then for the actual v4l2 queue
// to use them.
if (queue_type == V4L2_MEMORY_MMAP) {
while (auto v4l2_buffer = CAPTURE_queue_->GetFreeBuffer()) {
if (!std::move(*v4l2_buffer).QueueMMap()) {
LOG(ERROR) << "CAPTURE queue failed to enqueue an MMAP buffer.";
return;
}
}
} else {
while (true) {
// When using a V4L2_MEMORY_DMABUF queue, resource ownership is in our
// |client_|s frame pool, and usually has less resources than what we
// have allocated here (because ours are just empty queue slots and we
// allocate conservatively). So, it's common that said frame pool gets
// exhausted before we run out of |CAPTURE_queue_|s free "buffers" here.
if (client_->GetVideoFramePool()->IsExhausted()) {
// All VideoFrames are elsewhere (maybe in flight). Request a callback
// when some of them are back.
// This weird jump is because the video frame pool cannot be called
// back (e.g. to query whether IsExhausted()) from the
// NotifyWhenFrameAvailable() callback because it would deadlock.
client_->GetVideoFramePool()->NotifyWhenFrameAvailable(base::BindOnce(
base::IgnoreResult(&base::SequencedTaskRunner::PostTask),
base::SequencedTaskRunner::GetCurrentDefault(), FROM_HERE,
base::BindOnce(
&V4L2StatefulVideoDecoder::TryAndEnqueueCAPTUREQueueBuffers,
weak_ptr_factory_for_CAPTURE_availability_.GetWeakPtr())));
return;
}
auto frame = client_->GetVideoFramePool()->GetFrame();
CHECK(frame);
// TODO(mcasas): Consider using GetFreeBufferForFrame().
auto v4l2_buffer = CAPTURE_queue_->GetFreeBuffer();
if (!v4l2_buffer) {
VLOGF(1) << "|CAPTURE_queue_| has no buffers";
return;
}
if (!std::move(*v4l2_buffer).QueueDMABuf(std::move(frame))) {
LOG(ERROR) << "CAPTURE queue failed to enqueue a DmaBuf buffer.";
return;
}
}
}
}
bool V4L2StatefulVideoDecoder::DrainOUTPUTQueue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(IsInitialized()) << "V4L2StatefulVideoDecoder must be Initialize()d";
bool success;
scoped_refptr<V4L2ReadableBuffer> dequeued_buffer;
for (std::tie(success, dequeued_buffer) = OUTPUT_queue_->DequeueBuffer();
success && dequeued_buffer;
std::tie(success, dequeued_buffer) = OUTPUT_queue_->DequeueBuffer()) {
PrintAndTraceQueueStates(FROM_HERE);
}
return success;
}
bool V4L2StatefulVideoDecoder::TryAndEnqueueOUTPUTQueueBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(IsInitialized()) << "V4L2StatefulVideoDecoder must be Initialize()d";
// First try to recover some free slots in |OUTPUT_queue_|.
if (!DrainOUTPUTQueue()) {
PLOG(ERROR) << "Failed to drain resources from |OUTPUT_queue_|.";
return false;
}
for (std::optional<V4L2WritableBufferRef> v4l2_buffer =
OUTPUT_queue_->GetFreeBuffer();
v4l2_buffer && !decoder_buffer_and_callbacks_.empty();
v4l2_buffer = OUTPUT_queue_->GetFreeBuffer()) {
PrintAndTraceQueueStates(FROM_HERE);
auto media_buffer = std::move(decoder_buffer_and_callbacks_.front().first);
auto media_decode_cb =
std::move(decoder_buffer_and_callbacks_.front().second);
decoder_buffer_and_callbacks_.pop();
// Every |decoder_buffer_and_callbacks_| entry is guaranteed to contain a
// valid DecodeCB. However, when the |h264_frame_reassembler_| is in use,
// not every |decoder_buffer_and_callbacks_| entry will contain a valid
// DecoderBuffer.
if (media_buffer) {
if (media_buffer->end_of_stream()) {
// We had received an end_of_stream() buffer but there were still
// pending |decoder_buffer_and_callbacks_|, so we stored it; we can now
// process it and start the Flush.
if (!OUTPUT_queue_->SendStopCommand()) {
std::move(media_decode_cb).Run(DecoderStatus::Codes::kFailed);
return false;
}
flush_cb_ = std::move(media_decode_cb);
return true;
}
CHECK_EQ(v4l2_buffer->PlanesCount(), 1u);
uint8_t* dst = static_cast<uint8_t*>(v4l2_buffer->GetPlaneMapping(0));
CHECK_GE(v4l2_buffer->GetPlaneSize(/*plane=*/0), media_buffer->size());
memcpy(dst, media_buffer->data(), media_buffer->size());
v4l2_buffer->SetPlaneBytesUsed(0, media_buffer->size());
VLOGF(4) << "Enqueuing " << media_buffer->size() << " bytes.";
v4l2_buffer->SetTimeStamp(TimeDeltaToTimeVal(media_buffer->timestamp()));
const int64_t flat_timespec = media_buffer->timestamp().InMilliseconds();
encoding_timestamps_[flat_timespec] = base::TimeTicks::Now();
if (!std::move(*v4l2_buffer).QueueMMap()) {
LOG(ERROR) << "Error while queuing input |media_buffer|!";
std::move(media_decode_cb)
.Run(DecoderStatus::Codes::kPlatformDecodeFailure);
return false;
}
}
std::move(media_decode_cb).Run(DecoderStatus::Codes::kOk);
}
return true;
}
void V4L2StatefulVideoDecoder::PrintAndTraceQueueStates(
const base::Location& from_here) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(IsInitialized()) << "V4L2StatefulVideoDecoder must be Initialize()d";
VLOG(4) << from_here.function_name() << "(): |OUTPUT_queue_| "
<< OUTPUT_queue_->QueuedBuffersCount() << "/"
<< OUTPUT_queue_->AllocatedBuffersCount() << ", |CAPTURE_queue_| "
<< (CAPTURE_queue_ ? CAPTURE_queue_->QueuedBuffersCount() : 0) << "/"
<< (CAPTURE_queue_ ? CAPTURE_queue_->AllocatedBuffersCount() : 0);
TRACE_COUNTER_ID1(
"media,gpu", "V4L2 OUTPUT Q used buffers", this,
base::checked_cast<int32_t>(OUTPUT_queue_->QueuedBuffersCount()));
TRACE_COUNTER_ID1("media,gpu", "V4L2 CAPTURE Q free buffers", this,
(CAPTURE_queue_ ? base::checked_cast<int32_t>(
CAPTURE_queue_->QueuedBuffersCount())
: 0));
}
bool V4L2StatefulVideoDecoder::IsInitialized() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return !!OUTPUT_queue_;
}
// static
int V4L2StatefulVideoDecoder::GetMaxNumDecoderInstances() {
if (!base::FeatureList::IsEnabled(media::kLimitConcurrentDecoderInstances)) {
return std::numeric_limits<int>::max();
}
constexpr char kVideoDeviceDriverPath[] = "/dev/video-dec0";
base::ScopedFD device_fd(HANDLE_EINTR(
open(kVideoDeviceDriverPath, O_RDWR | O_NONBLOCK | O_CLOEXEC)));
if (!device_fd.is_valid()) {
return std::numeric_limits<int>::max();
}
struct v4l2_capability caps = {};
if (HandledIoctl(device_fd.get(), VIDIOC_QUERYCAP, &caps) != kIoctlOk) {
PLOG(ERROR) << "Failed querying caps";
return std::numeric_limits<int>::max();
}
const bool is_mtk8173 = base::Contains(
std::string(reinterpret_cast<const char*>(caps.card)), "8173");
// Experimentally MTK8173 (e.g. Hana) can initialize the driver up to 30
// times simultaneously, however legacy code limits this to 10 [1] . All other
// drivers used to limit this to 32 [2] but in practice I could only open up
// to 15 with e.g. Qualcomm SC7180.
// [1] https://source.chromium.org/chromium/chromium/src/+/main:media/gpu/v4l2/legacy/v4l2_video_decode_accelerator.h;l=449-454;drc=83195d4d1e1a4e54f148ddc80d0edcf5daa755ff
// [2] https://source.chromium.org/chromium/chromium/src/+/main:media/gpu/v4l2/v4l2_video_decoder.h;l=183-189;drc=90fa47c897b589bc4857fb7ccafab46a4be2e2ae
return is_mtk8173 ? 10 : 15;
}
std::vector<std::pair<scoped_refptr<DecoderBuffer>, VideoDecoder::DecodeCB>>
H264FrameReassembler::Process(scoped_refptr<DecoderBuffer> buffer,
VideoDecoder::DecodeCB decode_cb) {
std::vector<std::pair<scoped_refptr<DecoderBuffer>, VideoDecoder::DecodeCB>>
frames;
auto remaining = base::span(*buffer);
do {
const auto nalu_info =
FindH264FrameBoundary(remaining.data(), remaining.size());
if (!nalu_info.has_value()) {
LOG(ERROR) << "Failed parsing H.264 DecoderBuffer";
std::move(decode_cb).Run(DecoderStatus::Codes::kFailed);
return {};
}
const size_t found_nalu_size =
base::checked_cast<size_t>(nalu_info->nalu_size);
if (nalu_info->is_start_of_new_frame && HasFragments()) {
VLOGF(4) << frame_fragments_.size()
<< " currently stored frame fragment(s) can be reassembled.";
frames.emplace_back(ReassembleFragments(frame_fragments_),
base::DoNothing());
}
if (nalu_info->is_whole_frame) {
VLOGF(3) << "Found a whole frame, size=" << found_nalu_size << " bytes";
frames.emplace_back(
DecoderBuffer::CopyFrom(remaining.take_first(found_nalu_size)),
base::DoNothing());
frames.back().first->set_timestamp(buffer->timestamp());
continue;
}
VLOGF(4) << "This was a frame fragment; storing it for later reassembly.";
frame_fragments_.emplace_back(
DecoderBuffer::CopyFrom(remaining.take_first(found_nalu_size)));
frame_fragments_.back()->set_timestamp(buffer->timestamp());
} while (!remaining.empty());
// |decode_cb| is used to signal to our client that encoded chunks have been
// "accepted", and that we are ready to receive more. It must be called in
// order of accepted frames. If there is no complete frame the callback still
// needs to be stuffed in |frames| so that when they are dequeued they are
// interleaved correctly. While there may not be compressed data to enqueue,
// there will always be a callback to enqueue.
if (frames.empty()) {
frames.emplace_back(nullptr, std::move(decode_cb));
} else {
frames.back().second = std::move(decode_cb);
}
return frames;
}
std::optional<struct H264FrameReassembler::FrameBoundaryInfo>
H264FrameReassembler::FindH264FrameBoundary(const uint8_t* const data,
size_t data_size) {
h264_parser_.SetStream(data, data_size);
while (true) {
H264NALU nalu = {};
H264Parser::Result result = h264_parser_.AdvanceToNextNALU(&nalu);
if (result == H264Parser::kInvalidStream ||
result == H264Parser::kUnsupportedStream) {
LOG(ERROR) << "Could not parse bitstream.";
return std::nullopt;
}
if (result == H264Parser::kEOStream) {
// Not an error per se, but strange to run out of data without having
// found a new NALU boundary. Pretend it's a frame boundary and move on.
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = true,
.nalu_size = nalu.size};
}
DCHECK_EQ(result, H264Parser::kOk);
static const char* kKnownNALUNames[] = {
"Unspecified", "NonIDRSlice", "SliceDataA",
"SliceDataB", "SliceDataC", "IDRSlice",
"SEIMessage", "SPS", "PPS",
"AUD", "EOSeq", "EOStream",
"Filler", "SPSExt", "Prefix",
"SubsetSPS", "DPS", "Reserved17",
"Reserved18", "CodedSliceAux", "CodedSliceExtension",
};
constexpr auto kMaxNALUTypeValue = std::size(kKnownNALUNames);
if (base::checked_cast<size_t>(nalu.nal_unit_type) >= kMaxNALUTypeValue) {
LOG(ERROR) << "NALU type unknown.";
return std::nullopt;
}
CHECK_GE(nalu.data, data);
CHECK_LE(nalu.data, data + data_size);
const auto nalu_size = nalu.data - data + nalu.size;
VLOGF(4) << "H264NALU type " << kKnownNALUNames[nalu.nal_unit_type]
<< ", NALU size=" << nalu_size
<< " bytes, payload size=" << nalu.size << " bytes";
switch (nalu.nal_unit_type) {
case H264NALU::kSPS:
result = h264_parser_.ParseSPS(&sps_id_);
if (result != H264Parser::kOk) {
LOG(ERROR) << "Could not parse SPS header.";
return std::nullopt;
}
previous_slice_header_.reset();
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = true,
.nalu_size = nalu_size};
case H264NALU::kPPS:
result = h264_parser_.ParsePPS(&pps_id_);
if (result != H264Parser::kOk) {
LOG(ERROR) << "Could not parse PPS header.";
return std::nullopt;
}
previous_slice_header_.reset();
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = true,
.nalu_size = nalu_size};
case H264NALU::kNonIDRSlice:
case H264NALU::kIDRSlice: {
H264SliceHeader curr_slice_header;
result = h264_parser_.ParseSliceHeader(nalu, &curr_slice_header);
if (result != H264Parser::kOk) {
// In this function we just want to find frame boundaries, so return
// but don't mark an error.
LOG(WARNING) << "Could not parse NALU header.";
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = false,
.nalu_size = nalu_size};
}
const bool is_new_frame =
previous_slice_header_ &&
IsNewH264Frame(h264_parser_.GetSPS(sps_id_),
h264_parser_.GetPPS(pps_id_),
previous_slice_header_.get(), &curr_slice_header);
previous_slice_header_ =
std::make_unique<H264SliceHeader>(curr_slice_header);
return FrameBoundaryInfo{.is_whole_frame = false,
.is_start_of_new_frame = is_new_frame,
.nalu_size = nalu_size};
}
case H264NALU::kSEIMessage:
case H264NALU::kAUD:
case H264NALU::kEOSeq:
case H264NALU::kEOStream:
case H264NALU::kFiller:
case H264NALU::kSPSExt:
case H264NALU::kPrefix:
case H264NALU::kSubsetSPS:
case H264NALU::kDPS:
case H264NALU::kReserved17:
case H264NALU::kReserved18:
// Anything else than SPS, PPS and Non/IDRs marks a new frame boundary.
previous_slice_header_.reset();
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = true,
.nalu_size = nalu_size};
default:
VLOGF(4) << "Unsupported NALU " << kKnownNALUNames[nalu.nal_unit_type];
}
}
}
} // namespace media