1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
media / gpu / v4l2 / v4l2_vda_helpers.cc [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_vda_helpers.h"
#include "base/containers/contains.h"
#include "base/functional/bind.h"
#include "base/ranges/algorithm.h"
#include "base/task/sequenced_task_runner.h"
#include "media/base/color_plane_layout.h"
#include "media/base/video_codecs.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_device.h"
#include "media/gpu/v4l2/v4l2_image_processor_backend.h"
#include "media/parsers/h264_parser.h"
namespace media {
namespace v4l2_vda_helpers {
std::optional<Fourcc> FindImageProcessorInputFormat(V4L2Device* vda_device) {
std::vector<uint32_t> processor_input_formats =
V4L2ImageProcessorBackend::GetSupportedInputFormats();
struct v4l2_fmtdesc fmtdesc;
memset(&fmtdesc, 0, sizeof(fmtdesc));
fmtdesc.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
while (vda_device->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
if (base::Contains(processor_input_formats, fmtdesc.pixelformat)) {
DVLOGF(3) << "Image processor input format=" << fmtdesc.description;
return Fourcc::FromV4L2PixFmt(fmtdesc.pixelformat);
}
++fmtdesc.index;
}
return std::nullopt;
}
std::optional<Fourcc> FindImageProcessorOutputFormat(V4L2Device* ip_device) {
// Prefer YVU420 and NV12 because ArcGpuVideoDecodeAccelerator only supports
// single physical plane.
static constexpr uint32_t kPreferredFormats[] = {V4L2_PIX_FMT_NV12,
V4L2_PIX_FMT_YVU420};
auto preferred_formats_first = [](uint32_t a, uint32_t b) -> bool {
auto* iter_a = base::ranges::find(kPreferredFormats, a);
auto* iter_b = base::ranges::find(kPreferredFormats, b);
return iter_a < iter_b;
};
std::vector<uint32_t> processor_output_formats =
V4L2ImageProcessorBackend::GetSupportedOutputFormats();
// Move the preferred formats to the front.
std::sort(processor_output_formats.begin(), processor_output_formats.end(),
preferred_formats_first);
for (uint32_t processor_output_format : processor_output_formats) {
auto fourcc = Fourcc::FromV4L2PixFmt(processor_output_format);
if (fourcc && ip_device->CanCreateEGLImageFrom(*fourcc)) {
DVLOGF(3) << "Image processor output format=" << processor_output_format;
return fourcc;
}
}
return std::nullopt;
}
std::unique_ptr<ImageProcessor> CreateImageProcessor(
const Fourcc vda_output_format,
const Fourcc ip_output_format,
const gfx::Size& vda_output_coded_size,
const gfx::Size& ip_output_coded_size,
const gfx::Rect& visible_rect,
VideoFrame::StorageType output_storage_type,
size_t nb_buffers,
scoped_refptr<V4L2Device> image_processor_device,
ImageProcessor::OutputMode image_processor_output_mode,
scoped_refptr<base::SequencedTaskRunner> client_task_runner,
ImageProcessor::ErrorCB error_cb) {
DCHECK_EQ(vda_output_coded_size, ip_output_coded_size);
DCHECK(gfx::Rect(ip_output_coded_size).Contains(visible_rect));
// TODO(crbug.com/917798): Use ImageProcessorFactory::Create() once we remove
// |image_processor_device_| from V4L2VideoDecodeAccelerator.
auto image_processor = ImageProcessor::Create(
base::BindRepeating(&V4L2ImageProcessorBackend::Create,
image_processor_device, nb_buffers),
ImageProcessor::PortConfig(vda_output_format, vda_output_coded_size, {},
visible_rect, VideoFrame::STORAGE_DMABUFS),
ImageProcessor::PortConfig(ip_output_format, ip_output_coded_size, {},
visible_rect, output_storage_type),
image_processor_output_mode, std::move(error_cb),
std::move(client_task_runner));
if (!image_processor)
return nullptr;
if (image_processor->output_config().size != ip_output_coded_size) {
VLOGF(1) << "Image processor should be able to use the requested output "
<< "coded size " << ip_output_coded_size.ToString()
<< " without adjusting to "
<< image_processor->output_config().size.ToString();
return nullptr;
}
if (image_processor->input_config().size != vda_output_coded_size) {
VLOGF(1) << "Image processor should be able to take the output coded "
<< "size of decoder " << vda_output_coded_size.ToString()
<< " without adjusting to "
<< image_processor->input_config().size.ToString();
return nullptr;
}
return image_processor;
}
gfx::Size NativePixmapSizeFromHandle(const gfx::NativePixmapHandle& handle,
const Fourcc fourcc,
const gfx::Size& current_size) {
const uint32_t stride = handle.planes[0].stride;
const uint32_t horiz_bits_per_pixel =
VideoFrame::PlaneHorizontalBitsPerPixel(fourcc.ToVideoPixelFormat(), 0);
DCHECK_NE(horiz_bits_per_pixel, 0u);
// Stride must fit exactly on a byte boundary (8 bits per byte)
DCHECK_EQ((stride * 8) % horiz_bits_per_pixel, 0u);
// Actual width of buffer is stride (in bits) divided by bits per pixel.
int adjusted_coded_width = stride * 8 / horiz_bits_per_pixel;
// If the buffer is multi-planar, then the height of the buffer does not
// matter as long as it covers the visible area and we can just return
// the current height.
// For single-planar however, the actual height can be inferred by dividing
// the start offset of the second plane by the stride of the first plane,
// since the second plane is supposed to start right after the first one.
int adjusted_coded_height =
handle.planes.size() > 1 && handle.planes[1].offset != 0
? handle.planes[1].offset / adjusted_coded_width
: current_size.height();
DCHECK_GE(adjusted_coded_width, current_size.width());
DCHECK_GE(adjusted_coded_height, current_size.height());
return gfx::Size(adjusted_coded_width, adjusted_coded_height);
}
// static
std::unique_ptr<InputBufferFragmentSplitter>
InputBufferFragmentSplitter::CreateFromProfile(
media::VideoCodecProfile profile) {
switch (VideoCodecProfileToVideoCodec(profile)) {
case VideoCodec::kH264:
return std::make_unique<
v4l2_vda_helpers::H264InputBufferFragmentSplitter>();
case VideoCodec::kVP8:
case VideoCodec::kVP9:
// VP8/VP9 don't need any frame splitting, use the default implementation.
return std::make_unique<v4l2_vda_helpers::InputBufferFragmentSplitter>();
default:
LOG(ERROR) << "Unhandled profile: " << profile;
return nullptr;
}
}
bool InputBufferFragmentSplitter::AdvanceFrameFragment(const uint8_t* data,
size_t size,
size_t* endpos) {
*endpos = size;
return true;
}
void InputBufferFragmentSplitter::Reset() {}
bool InputBufferFragmentSplitter::IsPartialFramePending() const {
return false;
}
H264InputBufferFragmentSplitter::H264InputBufferFragmentSplitter()
: h264_parser_(new H264Parser()) {}
H264InputBufferFragmentSplitter::~H264InputBufferFragmentSplitter() = default;
bool H264InputBufferFragmentSplitter::AdvanceFrameFragment(const uint8_t* data,
size_t size,
size_t* endpos) {
DCHECK(h264_parser_);
// For H264, we need to feed HW one frame at a time. This is going to take
// some parsing of our input stream.
h264_parser_->SetStream(data, size);
H264NALU nalu;
H264Parser::Result result;
bool has_frame_data = false;
*endpos = 0;
// Keep on peeking the next NALs while they don't indicate a frame
// boundary.
while (true) {
bool end_of_frame = false;
result = h264_parser_->AdvanceToNextNALU(&nalu);
if (result == H264Parser::kInvalidStream ||
result == H264Parser::kUnsupportedStream) {
return false;
}
if (result == H264Parser::kEOStream) {
// We've reached the end of the buffer before finding a frame boundary.
if (has_frame_data)
partial_frame_pending_ = true;
*endpos = size;
return true;
}
switch (nalu.nal_unit_type) {
case H264NALU::kNonIDRSlice:
case H264NALU::kIDRSlice:
if (nalu.size < 1)
return false;
has_frame_data = true;
// For these two, if the "first_mb_in_slice" field is zero, start a
// new frame and return. This field is Exp-Golomb coded starting on
// the eighth data bit of the NAL; a zero value is encoded with a
// leading '1' bit in the byte, which we can detect as the byte being
// (unsigned) greater than or equal to 0x80.
if (nalu.data[1] >= 0x80) {
end_of_frame = true;
break;
}
break;
case H264NALU::kSEIMessage:
case H264NALU::kSPS:
case H264NALU::kPPS:
case H264NALU::kAUD:
case H264NALU::kEOSeq:
case H264NALU::kEOStream:
case H264NALU::kFiller:
case H264NALU::kSPSExt:
case H264NALU::kPrefix:
case H264NALU::kSubsetSPS:
case H264NALU::kDPS:
case H264NALU::kReserved17:
case H264NALU::kReserved18:
// These unconditionally signal a frame boundary.
end_of_frame = true;
break;
default:
// For all others, keep going.
break;
}
if (end_of_frame) {
if (!partial_frame_pending_ && *endpos == 0) {
// The frame was previously restarted, and we haven't filled the
// current frame with any contents yet. Start the new frame here and
// continue parsing NALs.
} else {
// The frame wasn't previously restarted and/or we have contents for
// the current frame; signal the start of a new frame here: we don't
// have a partial frame anymore.
partial_frame_pending_ = false;
return true;
}
}
*endpos = (nalu.data + base::checked_cast<size_t>(nalu.size)) - data;
}
NOTREACHED();
}
void H264InputBufferFragmentSplitter::Reset() {
partial_frame_pending_ = false;
h264_parser_.reset(new H264Parser());
}
bool H264InputBufferFragmentSplitter::IsPartialFramePending() const {
return partial_frame_pending_;
}
} // namespace v4l2_vda_helpers
} // namespace media