1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276

media / gpu / v4l2 / v4l2_vda_helpers.cc [blame]

// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/gpu/v4l2/v4l2_vda_helpers.h"

#include "base/containers/contains.h"
#include "base/functional/bind.h"
#include "base/ranges/algorithm.h"
#include "base/task/sequenced_task_runner.h"
#include "media/base/color_plane_layout.h"
#include "media/base/video_codecs.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_device.h"
#include "media/gpu/v4l2/v4l2_image_processor_backend.h"
#include "media/parsers/h264_parser.h"

namespace media {
namespace v4l2_vda_helpers {

std::optional<Fourcc> FindImageProcessorInputFormat(V4L2Device* vda_device) {
  std::vector<uint32_t> processor_input_formats =
      V4L2ImageProcessorBackend::GetSupportedInputFormats();

  struct v4l2_fmtdesc fmtdesc;
  memset(&fmtdesc, 0, sizeof(fmtdesc));
  fmtdesc.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
  while (vda_device->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
    if (base::Contains(processor_input_formats, fmtdesc.pixelformat)) {
      DVLOGF(3) << "Image processor input format=" << fmtdesc.description;
      return Fourcc::FromV4L2PixFmt(fmtdesc.pixelformat);
    }
    ++fmtdesc.index;
  }
  return std::nullopt;
}

std::optional<Fourcc> FindImageProcessorOutputFormat(V4L2Device* ip_device) {
  // Prefer YVU420 and NV12 because ArcGpuVideoDecodeAccelerator only supports
  // single physical plane.
  static constexpr uint32_t kPreferredFormats[] = {V4L2_PIX_FMT_NV12,
                                                   V4L2_PIX_FMT_YVU420};
  auto preferred_formats_first = [](uint32_t a, uint32_t b) -> bool {
    auto* iter_a = base::ranges::find(kPreferredFormats, a);
    auto* iter_b = base::ranges::find(kPreferredFormats, b);
    return iter_a < iter_b;
  };

  std::vector<uint32_t> processor_output_formats =
      V4L2ImageProcessorBackend::GetSupportedOutputFormats();

  // Move the preferred formats to the front.
  std::sort(processor_output_formats.begin(), processor_output_formats.end(),
            preferred_formats_first);

  for (uint32_t processor_output_format : processor_output_formats) {
    auto fourcc = Fourcc::FromV4L2PixFmt(processor_output_format);
    if (fourcc && ip_device->CanCreateEGLImageFrom(*fourcc)) {
      DVLOGF(3) << "Image processor output format=" << processor_output_format;
      return fourcc;
    }
  }

  return std::nullopt;
}

std::unique_ptr<ImageProcessor> CreateImageProcessor(
    const Fourcc vda_output_format,
    const Fourcc ip_output_format,
    const gfx::Size& vda_output_coded_size,
    const gfx::Size& ip_output_coded_size,
    const gfx::Rect& visible_rect,
    VideoFrame::StorageType output_storage_type,
    size_t nb_buffers,
    scoped_refptr<V4L2Device> image_processor_device,
    ImageProcessor::OutputMode image_processor_output_mode,
    scoped_refptr<base::SequencedTaskRunner> client_task_runner,
    ImageProcessor::ErrorCB error_cb) {
  DCHECK_EQ(vda_output_coded_size, ip_output_coded_size);
  DCHECK(gfx::Rect(ip_output_coded_size).Contains(visible_rect));

  // TODO(crbug.com/917798): Use ImageProcessorFactory::Create() once we remove
  //     |image_processor_device_| from V4L2VideoDecodeAccelerator.
  auto image_processor = ImageProcessor::Create(
      base::BindRepeating(&V4L2ImageProcessorBackend::Create,
                          image_processor_device, nb_buffers),
      ImageProcessor::PortConfig(vda_output_format, vda_output_coded_size, {},
                                 visible_rect, VideoFrame::STORAGE_DMABUFS),
      ImageProcessor::PortConfig(ip_output_format, ip_output_coded_size, {},
                                 visible_rect, output_storage_type),
      image_processor_output_mode, std::move(error_cb),
      std::move(client_task_runner));
  if (!image_processor)
    return nullptr;

  if (image_processor->output_config().size != ip_output_coded_size) {
    VLOGF(1) << "Image processor should be able to use the requested output "
             << "coded size " << ip_output_coded_size.ToString()
             << " without adjusting to "
             << image_processor->output_config().size.ToString();
    return nullptr;
  }

  if (image_processor->input_config().size != vda_output_coded_size) {
    VLOGF(1) << "Image processor should be able to take the output coded "
             << "size of decoder " << vda_output_coded_size.ToString()
             << " without adjusting to "
             << image_processor->input_config().size.ToString();
    return nullptr;
  }

  return image_processor;
}

gfx::Size NativePixmapSizeFromHandle(const gfx::NativePixmapHandle& handle,
                                     const Fourcc fourcc,
                                     const gfx::Size& current_size) {
  const uint32_t stride = handle.planes[0].stride;
  const uint32_t horiz_bits_per_pixel =
      VideoFrame::PlaneHorizontalBitsPerPixel(fourcc.ToVideoPixelFormat(), 0);
  DCHECK_NE(horiz_bits_per_pixel, 0u);
  // Stride must fit exactly on a byte boundary (8 bits per byte)
  DCHECK_EQ((stride * 8) % horiz_bits_per_pixel, 0u);

  // Actual width of buffer is stride (in bits) divided by bits per pixel.
  int adjusted_coded_width = stride * 8 / horiz_bits_per_pixel;
  // If the buffer is multi-planar, then the height of the buffer does not
  // matter as long as it covers the visible area and we can just return
  // the current height.
  // For single-planar however, the actual height can be inferred by dividing
  // the start offset of the second plane by the stride of the first plane,
  // since the second plane is supposed to start right after the first one.
  int adjusted_coded_height =
      handle.planes.size() > 1 && handle.planes[1].offset != 0
          ? handle.planes[1].offset / adjusted_coded_width
          : current_size.height();

  DCHECK_GE(adjusted_coded_width, current_size.width());
  DCHECK_GE(adjusted_coded_height, current_size.height());

  return gfx::Size(adjusted_coded_width, adjusted_coded_height);
}

// static
std::unique_ptr<InputBufferFragmentSplitter>
InputBufferFragmentSplitter::CreateFromProfile(
    media::VideoCodecProfile profile) {
  switch (VideoCodecProfileToVideoCodec(profile)) {
    case VideoCodec::kH264:
      return std::make_unique<
          v4l2_vda_helpers::H264InputBufferFragmentSplitter>();
    case VideoCodec::kVP8:
    case VideoCodec::kVP9:
      // VP8/VP9 don't need any frame splitting, use the default implementation.
      return std::make_unique<v4l2_vda_helpers::InputBufferFragmentSplitter>();
    default:
      LOG(ERROR) << "Unhandled profile: " << profile;
      return nullptr;
  }
}

bool InputBufferFragmentSplitter::AdvanceFrameFragment(const uint8_t* data,
                                                       size_t size,
                                                       size_t* endpos) {
  *endpos = size;
  return true;
}

void InputBufferFragmentSplitter::Reset() {}

bool InputBufferFragmentSplitter::IsPartialFramePending() const {
  return false;
}

H264InputBufferFragmentSplitter::H264InputBufferFragmentSplitter()
    : h264_parser_(new H264Parser()) {}

H264InputBufferFragmentSplitter::~H264InputBufferFragmentSplitter() = default;

bool H264InputBufferFragmentSplitter::AdvanceFrameFragment(const uint8_t* data,
                                                           size_t size,
                                                           size_t* endpos) {
  DCHECK(h264_parser_);

  // For H264, we need to feed HW one frame at a time.  This is going to take
  // some parsing of our input stream.
  h264_parser_->SetStream(data, size);
  H264NALU nalu;
  H264Parser::Result result;
  bool has_frame_data = false;
  *endpos = 0;

  // Keep on peeking the next NALs while they don't indicate a frame
  // boundary.
  while (true) {
    bool end_of_frame = false;
    result = h264_parser_->AdvanceToNextNALU(&nalu);
    if (result == H264Parser::kInvalidStream ||
        result == H264Parser::kUnsupportedStream) {
      return false;
    }
    if (result == H264Parser::kEOStream) {
      // We've reached the end of the buffer before finding a frame boundary.
      if (has_frame_data)
        partial_frame_pending_ = true;
      *endpos = size;
      return true;
    }
    switch (nalu.nal_unit_type) {
      case H264NALU::kNonIDRSlice:
      case H264NALU::kIDRSlice:
        if (nalu.size < 1)
          return false;

        has_frame_data = true;

        // For these two, if the "first_mb_in_slice" field is zero, start a
        // new frame and return.  This field is Exp-Golomb coded starting on
        // the eighth data bit of the NAL; a zero value is encoded with a
        // leading '1' bit in the byte, which we can detect as the byte being
        // (unsigned) greater than or equal to 0x80.
        if (nalu.data[1] >= 0x80) {
          end_of_frame = true;
          break;
        }
        break;
      case H264NALU::kSEIMessage:
      case H264NALU::kSPS:
      case H264NALU::kPPS:
      case H264NALU::kAUD:
      case H264NALU::kEOSeq:
      case H264NALU::kEOStream:
      case H264NALU::kFiller:
      case H264NALU::kSPSExt:
      case H264NALU::kPrefix:
      case H264NALU::kSubsetSPS:
      case H264NALU::kDPS:
      case H264NALU::kReserved17:
      case H264NALU::kReserved18:
        // These unconditionally signal a frame boundary.
        end_of_frame = true;
        break;
      default:
        // For all others, keep going.
        break;
    }
    if (end_of_frame) {
      if (!partial_frame_pending_ && *endpos == 0) {
        // The frame was previously restarted, and we haven't filled the
        // current frame with any contents yet.  Start the new frame here and
        // continue parsing NALs.
      } else {
        // The frame wasn't previously restarted and/or we have contents for
        // the current frame; signal the start of a new frame here: we don't
        // have a partial frame anymore.
        partial_frame_pending_ = false;
        return true;
      }
    }
    *endpos = (nalu.data + base::checked_cast<size_t>(nalu.size)) - data;
  }
  NOTREACHED();
}

void H264InputBufferFragmentSplitter::Reset() {
  partial_frame_pending_ = false;
  h264_parser_.reset(new H264Parser());
}

bool H264InputBufferFragmentSplitter::IsPartialFramePending() const {
  return partial_frame_pending_;
}

}  // namespace v4l2_vda_helpers
}  // namespace media