1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
media / gpu / v4l2 / v4l2_video_decoder_delegate_av1.cc [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_video_decoder_delegate_av1.h"
#include <linux/v4l2-controls.h>
#include <linux/videodev2.h>
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_decode_surface.h"
#include "media/gpu/v4l2/v4l2_decode_surface_handler.h"
#include "third_party/libgav1/src/src/obu_parser.h"
#include "third_party/libgav1/src/src/warp_prediction.h"
namespace media {
using DecodeStatus = AV1Decoder::AV1Accelerator::Status;
class V4L2AV1Picture : public AV1Picture {
public:
V4L2AV1Picture(scoped_refptr<V4L2DecodeSurface> dec_surface)
: dec_surface_(std::move(dec_surface)) {}
V4L2AV1Picture(const V4L2AV1Picture&) = delete;
V4L2AV1Picture& operator=(const V4L2AV1Picture&) = delete;
const scoped_refptr<V4L2DecodeSurface>& dec_surface() const {
return dec_surface_;
}
private:
~V4L2AV1Picture() override = default;
scoped_refptr<AV1Picture> CreateDuplicate() override {
return new V4L2AV1Picture(dec_surface_);
}
scoped_refptr<V4L2DecodeSurface> dec_surface_;
};
namespace {
// TODO(stevecho): Remove this when AV1 uAPI RFC v3 change
// (crrev/c/3859126) lands.
#ifndef BIT
#define BIT(nr) (1U << (nr))
#endif
// Section 5.5. Sequence header OBU syntax in the AV1 spec.
// https://aomediacodec.github.io/av1-spec
struct v4l2_ctrl_av1_sequence FillSequenceParams(
const libgav1::ObuSequenceHeader& seq_header) {
struct v4l2_ctrl_av1_sequence v4l2_seq_params = {};
if (seq_header.still_picture)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_STILL_PICTURE;
if (seq_header.use_128x128_superblock)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_USE_128X128_SUPERBLOCK;
if (seq_header.enable_filter_intra)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_FILTER_INTRA;
if (seq_header.enable_intra_edge_filter)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_INTRA_EDGE_FILTER;
if (seq_header.enable_interintra_compound)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_INTERINTRA_COMPOUND;
if (seq_header.enable_masked_compound)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_MASKED_COMPOUND;
if (seq_header.enable_warped_motion)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_WARPED_MOTION;
if (seq_header.enable_dual_filter)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_DUAL_FILTER;
if (seq_header.enable_order_hint)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_ORDER_HINT;
if (seq_header.enable_jnt_comp)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_JNT_COMP;
if (seq_header.enable_ref_frame_mvs)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_REF_FRAME_MVS;
if (seq_header.enable_superres)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_SUPERRES;
if (seq_header.enable_cdef)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_CDEF;
if (seq_header.enable_restoration)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_RESTORATION;
if (seq_header.color_config.is_monochrome)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_MONO_CHROME;
if (seq_header.color_config.color_range)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_COLOR_RANGE;
if (seq_header.color_config.subsampling_x)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_SUBSAMPLING_X;
if (seq_header.color_config.subsampling_y)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_SUBSAMPLING_Y;
if (seq_header.film_grain_params_present)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_FILM_GRAIN_PARAMS_PRESENT;
if (seq_header.color_config.separate_uv_delta_q)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_SEPARATE_UV_DELTA_Q;
v4l2_seq_params.seq_profile = seq_header.profile;
v4l2_seq_params.order_hint_bits = seq_header.order_hint_bits;
v4l2_seq_params.bit_depth = seq_header.color_config.bitdepth;
v4l2_seq_params.max_frame_width_minus_1 = seq_header.max_frame_width - 1;
v4l2_seq_params.max_frame_height_minus_1 = seq_header.max_frame_height - 1;
return v4l2_seq_params;
}
// Section 5.9.11. Loop filter params syntax.
// Note that |update_ref_delta| and |update_mode_delta| flags in the spec
// are not needed for V4L2 AV1 API.
void FillLoopFilterParams(v4l2_av1_loop_filter& v4l2_lf,
const libgav1::LoopFilter& lf) {
if (lf.delta_enabled)
v4l2_lf.flags |= V4L2_AV1_LOOP_FILTER_FLAG_DELTA_ENABLED;
if (lf.delta_update)
v4l2_lf.flags |= V4L2_AV1_LOOP_FILTER_FLAG_DELTA_UPDATE;
static_assert(std::size(decltype(v4l2_lf.level){}) == libgav1::kFrameLfCount,
"Invalid size of loop filter level (strength) array");
for (size_t i = 0; i < libgav1::kFrameLfCount; i++)
v4l2_lf.level[i] = base::checked_cast<__u8>(lf.level[i]);
v4l2_lf.sharpness = lf.sharpness;
static_assert(std::size(decltype(v4l2_lf.ref_deltas){}) ==
libgav1::kNumReferenceFrameTypes,
"Invalid size of ref deltas array");
for (size_t i = 0; i < libgav1::kNumReferenceFrameTypes; i++)
v4l2_lf.ref_deltas[i] = lf.ref_deltas[i];
static_assert(std::size(decltype(v4l2_lf.mode_deltas){}) ==
libgav1::kLoopFilterMaxModeDeltas,
"Invalid size of mode deltas array");
for (size_t i = 0; i < libgav1::kLoopFilterMaxModeDeltas; i++)
v4l2_lf.mode_deltas[i] = lf.mode_deltas[i];
}
// Section 5.9.12. Quantization params syntax
void FillQuantizationParams(v4l2_av1_quantization& v4l2_quant,
const libgav1::QuantizerParameters& quant) {
if (quant.use_matrix)
v4l2_quant.flags |= V4L2_AV1_QUANTIZATION_FLAG_USING_QMATRIX;
v4l2_quant.base_q_idx = quant.base_index;
// Note that quant.delta_ac[0] is useless
// because it is always 0 according to libgav1.
v4l2_quant.delta_q_y_dc = quant.delta_dc[0];
v4l2_quant.delta_q_u_dc = quant.delta_dc[1];
v4l2_quant.delta_q_u_ac = quant.delta_ac[1];
v4l2_quant.delta_q_v_dc = quant.delta_dc[2];
v4l2_quant.delta_q_v_ac = quant.delta_ac[2];
if (!quant.use_matrix)
return;
v4l2_quant.qm_y = base::checked_cast<uint8_t>(quant.matrix_level[0]);
v4l2_quant.qm_u = base::checked_cast<uint8_t>(quant.matrix_level[1]);
v4l2_quant.qm_v = base::checked_cast<uint8_t>(quant.matrix_level[2]);
}
// Section 5.9.14. Segmentation params syntax
struct v4l2_av1_segmentation FillSegmentationParams(
const libgav1::Segmentation& seg) {
struct v4l2_av1_segmentation v4l2_seg = {};
if (seg.enabled)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_ENABLED;
if (seg.update_map)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_UPDATE_MAP;
if (seg.temporal_update)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_TEMPORAL_UPDATE;
if (seg.update_data)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_UPDATE_DATA;
if (seg.segment_id_pre_skip)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_SEG_ID_PRE_SKIP;
static_assert(
std::size(decltype(v4l2_seg.feature_enabled){}) == libgav1::kMaxSegments,
"Invalid size of |feature_enabled| array in |v4l2_av1_segmentation| "
"struct");
static_assert(
std::size(decltype(v4l2_seg.feature_data){}) == libgav1::kMaxSegments &&
std::extent<decltype(v4l2_seg.feature_data), 0>::value ==
libgav1::kSegmentFeatureMax,
"Invalid size of |feature_data| array in |v4l2_av1_segmentation| struct");
for (size_t i = 0; i < libgav1::kMaxSegments; ++i) {
for (size_t j = 0; j < libgav1::kSegmentFeatureMax; ++j) {
v4l2_seg.feature_enabled[i] |= (seg.feature_enabled[i][j] << j);
v4l2_seg.feature_data[i][j] = seg.feature_data[i][j];
}
}
v4l2_seg.last_active_seg_id = seg.last_active_segment_id;
return v4l2_seg;
}
// Section 5.9.15. Tile info syntax
struct v4l2_av1_tile_info FillTileInfo(const libgav1::TileInfo& ti) {
struct v4l2_av1_tile_info v4l2_ti = {};
if (ti.uniform_spacing)
v4l2_ti.flags |= V4L2_AV1_TILE_INFO_FLAG_UNIFORM_TILE_SPACING;
static_assert(std::size(decltype(v4l2_ti.mi_col_starts){}) ==
(libgav1::kMaxTileColumns + 1),
"Size of |mi_col_starts| array in |v4l2_av1_tile_info| struct "
"does not match libgav1 expectation");
for (size_t i = 0; i < libgav1::kMaxTileColumns + 1; i++) {
v4l2_ti.mi_col_starts[i] =
base::checked_cast<uint32_t>(ti.tile_column_start[i]);
}
static_assert(std::size(decltype(v4l2_ti.mi_row_starts){}) ==
(libgav1::kMaxTileRows + 1),
"Size of |mi_row_starts| array in |v4l2_av1_tile_info| struct "
"does not match libgav1 expectation");
for (size_t i = 0; i < libgav1::kMaxTileRows + 1; i++) {
v4l2_ti.mi_row_starts[i] =
base::checked_cast<uint32_t>(ti.tile_row_start[i]);
}
if (!ti.uniform_spacing) {
// Confirmed that |kMaxTileColumns| is enough size for
// |width_in_sbs_minus_1| and |kMaxTileRows| is enough size for
// |height_in_sbs_minus_1|
// https://b.corp.google.com/issues/187828854#comment19
static_assert(
std::size(decltype(v4l2_ti.width_in_sbs_minus_1){}) ==
libgav1::kMaxTileColumns,
"Size of |width_in_sbs_minus_1| array in |v4l2_av1_tile_info| struct "
"does not match libgav1 expectation");
for (size_t i = 0; i < libgav1::kMaxTileColumns; i++) {
if (ti.tile_column_width_in_superblocks[i] >= 1) {
v4l2_ti.width_in_sbs_minus_1[i] = base::checked_cast<uint32_t>(
ti.tile_column_width_in_superblocks[i] - 1);
}
}
static_assert(
std::size(decltype(v4l2_ti.height_in_sbs_minus_1){}) ==
libgav1::kMaxTileRows,
"Size of |height_in_sbs_minus_1| array in |v4l2_av1_tile_info| struct "
"does not match libgav1 expectation");
for (size_t i = 0; i < libgav1::kMaxTileRows; i++) {
if (ti.tile_row_height_in_superblocks[i] >= 1) {
v4l2_ti.height_in_sbs_minus_1[i] = base::checked_cast<uint32_t>(
ti.tile_row_height_in_superblocks[i] - 1);
}
}
}
v4l2_ti.tile_size_bytes = ti.tile_size_bytes;
v4l2_ti.context_update_tile_id = ti.context_update_id;
v4l2_ti.tile_cols = ti.tile_columns;
v4l2_ti.tile_rows = ti.tile_rows;
return v4l2_ti;
}
// Section 5.9.17. Quantizer index delta parameters syntax
void FillQuantizerIndexDeltaParams(struct v4l2_av1_quantization& v4l2_quant,
const libgav1::ObuSequenceHeader& seq_header,
const libgav1::ObuFrameHeader& frm_header) {
// |diff_uv_delta| in the spec doesn't exist in libgav1,
// because libgav1 infers it using the following logic.
const bool diff_uv_delta = (frm_header.quantizer.base_index != 0) &&
(!seq_header.color_config.is_monochrome) &&
(seq_header.color_config.separate_uv_delta_q);
if (diff_uv_delta)
v4l2_quant.flags |= V4L2_AV1_QUANTIZATION_FLAG_DIFF_UV_DELTA;
if (frm_header.delta_q.present)
v4l2_quant.flags |= V4L2_AV1_QUANTIZATION_FLAG_DELTA_Q_PRESENT;
// |scale| is used to store |delta_q_res| value. This is because libgav1 uses
// the same struct |Delta| both for quantizer index delta parameters and loop
// filter delta parameters.
v4l2_quant.delta_q_res = frm_header.delta_q.scale;
}
// Section 5.9.18. Loop filter delta parameters syntax.
// Note that |delta_lf_res| in |v4l2_av1_loop_filter| corresponds to
// |delta_lf.scale| in the frame header defined in libgav1.
void FillLoopFilterDeltaParams(struct v4l2_av1_loop_filter& v4l2_lf,
const libgav1::Delta& delta_lf) {
if (delta_lf.present)
v4l2_lf.flags |= V4L2_AV1_LOOP_FILTER_FLAG_DELTA_LF_PRESENT;
if (delta_lf.multi)
v4l2_lf.flags |= V4L2_AV1_LOOP_FILTER_FLAG_DELTA_LF_MULTI;
v4l2_lf.delta_lf_res = delta_lf.scale;
}
// Section 5.9.19. CDEF params syntax
struct v4l2_av1_cdef FillCdefParams(const libgav1::Cdef& cdef,
uint8_t color_bitdepth) {
struct v4l2_av1_cdef v4l2_cdef = {};
// Damping value parsed in libgav1 is from the spec + (|color_bitdepth| - 8).
CHECK_GE(color_bitdepth, 8u);
const uint8_t coeff_shift = color_bitdepth - 8u;
v4l2_cdef.damping_minus_3 =
base::checked_cast<uint8_t>(cdef.damping - coeff_shift - 3u);
v4l2_cdef.bits = cdef.bits;
static_assert(std::size(decltype(v4l2_cdef.y_pri_strength){}) ==
libgav1::kMaxCdefStrengths,
"Invalid size of cdef y_pri_strength strength");
static_assert(std::size(decltype(v4l2_cdef.y_sec_strength){}) ==
libgav1::kMaxCdefStrengths,
"Invalid size of cdef y_sec_strength strength");
static_assert(std::size(decltype(v4l2_cdef.uv_pri_strength){}) ==
libgav1::kMaxCdefStrengths,
"Invalid size of cdef uv_pri_strength strength");
static_assert(std::size(decltype(v4l2_cdef.uv_sec_strength){}) ==
libgav1::kMaxCdefStrengths,
"Invalid size of cdef uv_sec_strength strength");
SafeArrayMemcpy(v4l2_cdef.y_pri_strength, cdef.y_primary_strength);
SafeArrayMemcpy(v4l2_cdef.y_sec_strength, cdef.y_secondary_strength);
SafeArrayMemcpy(v4l2_cdef.uv_pri_strength, cdef.uv_primary_strength);
SafeArrayMemcpy(v4l2_cdef.uv_sec_strength, cdef.uv_secondary_strength);
// All the strength values parsed in libgav1 are from the AV1 spec and left
// shifted by (|color_bitdepth| - 8). So these values need to be right shifted
// by (|color_bitdepth| - 8) before passing to a driver.
for (size_t i = 0; i < libgav1::kMaxCdefStrengths; i++) {
v4l2_cdef.y_pri_strength[i] >>= coeff_shift;
v4l2_cdef.y_sec_strength[i] >>= coeff_shift;
v4l2_cdef.uv_pri_strength[i] >>= coeff_shift;
v4l2_cdef.uv_sec_strength[i] >>= coeff_shift;
}
return v4l2_cdef;
}
// 5.9.20. Loop restoration params syntax
struct v4l2_av1_loop_restoration FillLoopRestorationParams(
const libgav1::LoopRestoration& lr) {
struct v4l2_av1_loop_restoration v4l2_lr = {};
for (size_t i = 0; i < V4L2_AV1_NUM_PLANES_MAX; i++) {
switch (lr.type[i]) {
case libgav1::LoopRestorationType::kLoopRestorationTypeNone:
v4l2_lr.frame_restoration_type[i] = V4L2_AV1_FRAME_RESTORE_NONE;
break;
case libgav1::LoopRestorationType::kLoopRestorationTypeWiener:
v4l2_lr.frame_restoration_type[i] = V4L2_AV1_FRAME_RESTORE_WIENER;
break;
case libgav1::LoopRestorationType::kLoopRestorationTypeSgrProj:
v4l2_lr.frame_restoration_type[i] = V4L2_AV1_FRAME_RESTORE_SGRPROJ;
break;
case libgav1::LoopRestorationType::kLoopRestorationTypeSwitchable:
v4l2_lr.frame_restoration_type[i] = V4L2_AV1_FRAME_RESTORE_SWITCHABLE;
break;
default:
NOTREACHED() << "Invalid loop restoration type";
}
if (v4l2_lr.frame_restoration_type[i] != V4L2_AV1_FRAME_RESTORE_NONE) {
if (true)
v4l2_lr.flags |= V4L2_AV1_LOOP_RESTORATION_FLAG_USES_LR;
if (i > 0)
v4l2_lr.flags |= V4L2_AV1_LOOP_RESTORATION_FLAG_USES_CHROMA_LR;
}
}
const bool use_loop_restoration =
std::find_if(std::begin(lr.type),
std::begin(lr.type) + libgav1::kMaxPlanes,
[](const auto type) {
return type != libgav1::kLoopRestorationTypeNone;
}) != (lr.type + libgav1::kMaxPlanes);
if (use_loop_restoration) {
DCHECK_GE(lr.unit_size_log2[0], lr.unit_size_log2[1]);
DCHECK_LE(lr.unit_size_log2[0] - lr.unit_size_log2[1], 1);
v4l2_lr.lr_unit_shift = lr.unit_size_log2[0] - 6;
v4l2_lr.lr_uv_shift = lr.unit_size_log2[0] - lr.unit_size_log2[1];
// AV1 spec (p.52) uses this formula with hard coded value 2.
// https://aomediacodec.github.io/av1-spec/#loop-restoration-params-syntax
v4l2_lr.loop_restoration_size[0] =
V4L2_AV1_RESTORATION_TILESIZE_MAX >> (2 - v4l2_lr.lr_unit_shift);
v4l2_lr.loop_restoration_size[1] =
v4l2_lr.loop_restoration_size[0] >> v4l2_lr.lr_uv_shift;
v4l2_lr.loop_restoration_size[2] =
v4l2_lr.loop_restoration_size[0] >> v4l2_lr.lr_uv_shift;
}
return v4l2_lr;
}
// Section 5.9.24. Global motion params syntax
struct v4l2_av1_global_motion FillGlobalMotionParams(
const std::array<libgav1::GlobalMotion, libgav1::kNumReferenceFrameTypes>&
gm_array) {
struct v4l2_av1_global_motion v4l2_gm = {};
// gm_array[0] (for kReferenceFrameIntra) is not used because global motion is
// not relevant for intra frames
for (size_t i = 1; i < libgav1::kNumReferenceFrameTypes; ++i) {
auto gm = gm_array[i];
switch (gm.type) {
case libgav1::kGlobalMotionTransformationTypeIdentity:
v4l2_gm.type[i] = V4L2_AV1_WARP_MODEL_IDENTITY;
break;
case libgav1::kGlobalMotionTransformationTypeTranslation:
v4l2_gm.type[i] = V4L2_AV1_WARP_MODEL_TRANSLATION;
v4l2_gm.flags[i] |= V4L2_AV1_GLOBAL_MOTION_FLAG_IS_TRANSLATION;
break;
case libgav1::kGlobalMotionTransformationTypeRotZoom:
v4l2_gm.type[i] = V4L2_AV1_WARP_MODEL_ROTZOOM;
v4l2_gm.flags[i] |= V4L2_AV1_GLOBAL_MOTION_FLAG_IS_ROT_ZOOM;
break;
case libgav1::kGlobalMotionTransformationTypeAffine:
v4l2_gm.type[i] = V4L2_AV1_WARP_MODEL_AFFINE;
v4l2_gm.flags[i] |= V4L2_AV1_WARP_MODEL_AFFINE;
break;
default:
NOTREACHED() << "Invalid global motion transformation type, "
<< v4l2_gm.type[i];
}
if (gm.type != libgav1::kGlobalMotionTransformationTypeIdentity)
v4l2_gm.flags[i] |= V4L2_AV1_GLOBAL_MOTION_FLAG_IS_GLOBAL;
constexpr auto kNumGlobalMotionParams = std::size(decltype(gm.params){});
for (size_t j = 0; j < kNumGlobalMotionParams; ++j) {
static_assert(
std::is_same<decltype(v4l2_gm.params[0][0]), int32_t&>::value,
"|v4l2_av1_global_motion::params|'s data type must be int32_t "
"starting from AV1 uAPI v4");
v4l2_gm.params[i][j] = gm.params[j];
}
if (!libgav1::SetupShear(&gm))
v4l2_gm.invalid |= V4L2_AV1_GLOBAL_MOTION_IS_INVALID(i);
}
return v4l2_gm;
}
// 5.9.2. Uncompressed header syntax
struct v4l2_ctrl_av1_frame SetupFrameParams(
const libgav1::ObuSequenceHeader& sequence_header,
const libgav1::ObuFrameHeader& frame_header,
const AV1ReferenceFrameVector& ref_frames) {
struct v4l2_ctrl_av1_frame v4l2_frame_params = {};
FillLoopFilterParams(v4l2_frame_params.loop_filter, frame_header.loop_filter);
FillLoopFilterDeltaParams(v4l2_frame_params.loop_filter,
frame_header.delta_lf);
FillQuantizationParams(v4l2_frame_params.quantization,
frame_header.quantizer);
FillQuantizerIndexDeltaParams(v4l2_frame_params.quantization, sequence_header,
frame_header);
v4l2_frame_params.segmentation =
FillSegmentationParams(frame_header.segmentation);
const auto color_bitdepth = sequence_header.color_config.bitdepth;
v4l2_frame_params.cdef = FillCdefParams(
frame_header.cdef, base::strict_cast<int8_t>(color_bitdepth));
v4l2_frame_params.loop_restoration =
FillLoopRestorationParams(frame_header.loop_restoration);
v4l2_frame_params.tile_info = FillTileInfo(frame_header.tile_info);
v4l2_frame_params.global_motion =
FillGlobalMotionParams(frame_header.global_motion);
if (frame_header.show_frame)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_SHOW_FRAME;
if (frame_header.showable_frame)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_SHOWABLE_FRAME;
if (frame_header.error_resilient_mode)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ERROR_RESILIENT_MODE;
if (frame_header.enable_cdf_update == false)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_DISABLE_CDF_UPDATE;
if (frame_header.allow_screen_content_tools)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ALLOW_SCREEN_CONTENT_TOOLS;
if (frame_header.force_integer_mv)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_FORCE_INTEGER_MV;
if (frame_header.allow_intrabc)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ALLOW_INTRABC;
if (frame_header.use_superres)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_USE_SUPERRES;
if (frame_header.allow_high_precision_mv)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ALLOW_HIGH_PRECISION_MV;
if (frame_header.is_motion_mode_switchable)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_IS_MOTION_MODE_SWITCHABLE;
if (frame_header.use_ref_frame_mvs)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_USE_REF_FRAME_MVS;
if (frame_header.enable_frame_end_update_cdf == false)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_DISABLE_FRAME_END_UPDATE_CDF;
if (frame_header.allow_warped_motion)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ALLOW_WARPED_MOTION;
if (frame_header.reference_mode_select)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_REFERENCE_SELECT;
if (frame_header.reduced_tx_set)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_REDUCED_TX_SET;
if (frame_header.skip_mode_frame[0] > 0)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_SKIP_MODE_ALLOWED;
if (frame_header.skip_mode_present)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_SKIP_MODE_PRESENT;
if (frame_header.frame_size_override_flag)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_FRAME_SIZE_OVERRIDE;
// libgav1 header doesn't have |buffer_removal_time_present_flag|.
if (frame_header.buffer_removal_time[0] > 0)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_BUFFER_REMOVAL_TIME_PRESENT;
if (frame_header.frame_refs_short_signaling)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_FRAME_REFS_SHORT_SIGNALING;
switch (frame_header.frame_type) {
case libgav1::kFrameKey:
v4l2_frame_params.frame_type = V4L2_AV1_KEY_FRAME;
break;
case libgav1::kFrameInter:
v4l2_frame_params.frame_type = V4L2_AV1_INTER_FRAME;
break;
case libgav1::kFrameIntraOnly:
v4l2_frame_params.frame_type = V4L2_AV1_INTRA_ONLY_FRAME;
break;
case libgav1::kFrameSwitch:
v4l2_frame_params.frame_type = V4L2_AV1_SWITCH_FRAME;
break;
default:
NOTREACHED() << "Invalid frame type, " << frame_header.frame_type;
}
v4l2_frame_params.order_hint = frame_header.order_hint;
v4l2_frame_params.superres_denom = frame_header.superres_scale_denominator;
v4l2_frame_params.upscaled_width = frame_header.upscaled_width;
switch (frame_header.interpolation_filter) {
case libgav1::kInterpolationFilterEightTap:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_EIGHTTAP;
break;
case libgav1::kInterpolationFilterEightTapSmooth:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_EIGHTTAP_SMOOTH;
break;
case libgav1::kInterpolationFilterEightTapSharp:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_EIGHTTAP_SHARP;
break;
case libgav1::kInterpolationFilterBilinear:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_BILINEAR;
break;
case libgav1::kInterpolationFilterSwitchable:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_SWITCHABLE;
break;
default:
NOTREACHED() << "Invalid interpolation filter, "
<< frame_header.interpolation_filter;
}
switch (frame_header.tx_mode) {
case libgav1::kTxModeOnly4x4:
v4l2_frame_params.tx_mode = V4L2_AV1_TX_MODE_ONLY_4X4;
break;
case libgav1::kTxModeLargest:
v4l2_frame_params.tx_mode = V4L2_AV1_TX_MODE_LARGEST;
break;
case libgav1::kTxModeSelect:
v4l2_frame_params.tx_mode = V4L2_AV1_TX_MODE_SELECT;
break;
default:
NOTREACHED() << "Invalid tx mode, " << frame_header.tx_mode;
}
v4l2_frame_params.frame_width_minus_1 = frame_header.width - 1;
v4l2_frame_params.frame_height_minus_1 = frame_header.height - 1;
v4l2_frame_params.render_width_minus_1 = frame_header.render_width - 1;
v4l2_frame_params.render_height_minus_1 = frame_header.render_height - 1;
v4l2_frame_params.current_frame_id = frame_header.current_frame_id;
v4l2_frame_params.primary_ref_frame = frame_header.primary_reference_frame;
SafeArrayMemcpy(v4l2_frame_params.buffer_removal_time,
frame_header.buffer_removal_time);
v4l2_frame_params.refresh_frame_flags = frame_header.refresh_frame_flags;
// |reference_frame_index| indicates which reference frame slot is used for
// different reference frame types: L(1), L2(2), L3(3), G(4), BWD(5), A2(6),
// A(7). As |ref_frames[i]| is a |AV1Picture| with frame header info, we can
// extract |order_hint| directly for each reference frame type instead of
// maintaining |RefOrderHint| array in the AV1 spec.
static_assert(std::size(decltype(v4l2_frame_params.order_hints){}) ==
libgav1::kNumInterReferenceFrameTypes + 1,
"Invalid size of |order_hints| array");
if (!libgav1::IsIntraFrame(frame_header.frame_type)) {
for (size_t i = 0; i < libgav1::kNumInterReferenceFrameTypes; ++i) {
const int8_t reference_frame_index =
frame_header.reference_frame_index[i];
// The DCHECK()s are guaranteed by
// AV1Decoder::CheckAndCleanUpReferenceFrames().
DCHECK_GE(reference_frame_index, 0);
DCHECK_LT(reference_frame_index, libgav1::kNumReferenceFrameTypes);
DCHECK(ref_frames[reference_frame_index]);
const uint8_t order_hint =
ref_frames[reference_frame_index]->frame_header.order_hint;
v4l2_frame_params.order_hints[i + 1] =
base::strict_cast<__u32>(order_hint);
}
}
// TODO(b/230891887): use uint64_t when v4l2_timeval_to_ns() function is used.
constexpr uint32_t kInvalidSurface = std::numeric_limits<uint32_t>::max();
for (size_t i = 0; i < libgav1::kNumReferenceFrameTypes; ++i) {
if (!ref_frames[i]) {
v4l2_frame_params.reference_frame_ts[i] = kInvalidSurface;
continue;
}
const auto* v4l2_ref_pic =
static_cast<const V4L2AV1Picture*>(ref_frames[i].get());
v4l2_frame_params.reference_frame_ts[i] =
v4l2_ref_pic->dec_surface()->GetReferenceID();
}
static_assert(std::size(decltype(v4l2_frame_params.ref_frame_idx){}) ==
libgav1::kNumInterReferenceFrameTypes,
"Invalid size of |ref_frame_idx| array");
for (size_t i = 0; i < libgav1::kNumInterReferenceFrameTypes; i++) {
LOG_IF(ERROR, (frame_header.frame_type == libgav1::kFrameKey) &&
(frame_header.reference_frame_index[i] != 0))
<< "|reference_frame_index| from the frame header is not 0 for the "
"intra frame";
static_assert(std::is_same<decltype(v4l2_frame_params.ref_frame_idx[0]),
int8_t&>::value,
"|v4l2_ctrl_av1_frame::ref_frame_idx|'s data type must be "
"int8_t starting from AV1 uAPI v4");
v4l2_frame_params.ref_frame_idx[i] = frame_header.reference_frame_index[i];
}
v4l2_frame_params.skip_mode_frame[0] =
base::checked_cast<__u8>(frame_header.skip_mode_frame[0]);
v4l2_frame_params.skip_mode_frame[1] =
base::checked_cast<__u8>(frame_header.skip_mode_frame[1]);
return v4l2_frame_params;
}
// Section 5.11. Tile Group OBU syntax
std::vector<struct v4l2_ctrl_av1_tile_group_entry> FillTileGroupParams(
const base::span<const uint8_t> frame_obu_data,
const size_t tile_columns,
const libgav1::Vector<libgav1::TileBuffer>& tile_buffers) {
// This could happen in rare cases (for example, if there is a Metadata OBU
// after the TileGroup OBU). We currently do not have a reason to handle those
// cases. This is also the case in libgav1 at the moment.
CHECK(!tile_buffers.empty());
CHECK_GT(tile_columns, 0u);
const uint32_t num_tiles = tile_buffers.size();
std::vector<struct v4l2_ctrl_av1_tile_group_entry> tile_group_entry_vector(
num_tiles);
for (uint32_t tile_index = 0; tile_index < num_tiles; ++tile_index) {
auto& tile_group_entry_params = tile_group_entry_vector[tile_index];
CHECK(tile_buffers[tile_index].data >= frame_obu_data.data());
tile_group_entry_params.tile_offset = base::checked_cast<uint32_t>(
tile_buffers[tile_index].data - frame_obu_data.data());
tile_group_entry_params.tile_size =
base::checked_cast<uint32_t>(tile_buffers[tile_index].size);
// The tiles are row-major. We use the number of columns |tile_columns|
// to compute computation of the row and column for a given tile.
tile_group_entry_params.tile_row =
tile_index / base::checked_cast<uint32_t>(tile_columns);
tile_group_entry_params.tile_col =
tile_index % base::checked_cast<uint32_t>(tile_columns);
base::CheckedNumeric<uint32_t> safe_tile_data_end(
tile_group_entry_params.tile_offset);
safe_tile_data_end += tile_group_entry_params.tile_size;
size_t tile_data_end;
if (!safe_tile_data_end.AssignIfValid(&tile_data_end) ||
tile_data_end > frame_obu_data.size()) {
DLOG(ERROR) << "Invalid tile offset and size"
<< ", offset=" << tile_group_entry_params.tile_offset
<< ", size=" << tile_group_entry_params.tile_size
<< ", entire data size=" << frame_obu_data.size();
return {};
}
}
return tile_group_entry_vector;
}
} // namespace
V4L2VideoDecoderDelegateAV1::V4L2VideoDecoderDelegateAV1(
V4L2DecodeSurfaceHandler* surface_handler,
V4L2Device* device)
: surface_handler_(surface_handler), device_(device) {
VLOGF(1);
DCHECK(surface_handler_);
DCHECK(device_);
}
V4L2VideoDecoderDelegateAV1::~V4L2VideoDecoderDelegateAV1() = default;
scoped_refptr<AV1Picture> V4L2VideoDecoderDelegateAV1::CreateAV1Picture(
bool apply_grain) {
scoped_refptr<V4L2DecodeSurface> dec_surface =
surface_handler_->CreateSurface();
if (!dec_surface)
return nullptr;
return new V4L2AV1Picture(std::move(dec_surface));
}
scoped_refptr<AV1Picture> V4L2VideoDecoderDelegateAV1::CreateAV1PictureSecure(
bool apply_grain,
uint64_t secure_handle) {
scoped_refptr<V4L2DecodeSurface> dec_surface =
surface_handler_->CreateSecureSurface(secure_handle);
if (!dec_surface) {
return nullptr;
}
return new V4L2AV1Picture(std::move(dec_surface));
}
DecodeStatus V4L2VideoDecoderDelegateAV1::SubmitDecode(
const AV1Picture& pic,
const libgav1::ObuSequenceHeader& sequence_header,
const AV1ReferenceFrameVector& ref_frames,
const libgav1::Vector<libgav1::TileBuffer>& tile_buffers,
base::span<const uint8_t> stream) {
struct v4l2_ctrl_av1_sequence v4l2_seq_params =
FillSequenceParams(sequence_header);
struct v4l2_ctrl_av1_frame v4l2_frame_params =
SetupFrameParams(sequence_header, pic.frame_header, ref_frames);
std::vector<struct v4l2_ctrl_av1_tile_group_entry> tile_group_entry_vectors =
FillTileGroupParams(stream, pic.frame_header.tile_info.tile_columns,
tile_buffers);
if (tile_group_entry_vectors.empty()) {
VLOGF(1) << "Tile group entry setup failed";
return DecodeStatus::kFail;
}
struct v4l2_ext_control ext_ctrl_array[] = {
{.id = V4L2_CID_STATELESS_AV1_SEQUENCE,
.size = sizeof(v4l2_seq_params),
.ptr = &v4l2_seq_params},
{.id = V4L2_CID_STATELESS_AV1_FRAME,
.size = sizeof(v4l2_frame_params),
.ptr = &v4l2_frame_params},
{.id = V4L2_CID_STATELESS_AV1_TILE_GROUP_ENTRY,
.size =
base::checked_cast<__u32>(tile_group_entry_vectors.size() *
sizeof(v4l2_ctrl_av1_tile_group_entry)),
.ptr = tile_group_entry_vectors.data()}};
struct v4l2_ext_controls ext_ctrls = {
.count = base::checked_cast<__u32>(std::size(ext_ctrl_array)),
.controls = ext_ctrl_array};
const auto* v4l2_pic = static_cast<const V4L2AV1Picture*>(&pic);
auto dec_surface = v4l2_pic->dec_surface();
dec_surface->PrepareSetCtrls(&ext_ctrls);
if (device_->Ioctl(VIDIOC_S_EXT_CTRLS, &ext_ctrls) != 0) {
RecordVidiocIoctlErrorUMA(VidiocIoctlRequests::kVidiocSExtCtrls);
VPLOGF(1) << "ioctl() failed: VIDIOC_S_EXT_CTRLS";
return DecodeStatus::kFail;
}
std::vector<scoped_refptr<V4L2DecodeSurface>> ref_surfaces;
for (size_t i = 0; i < libgav1::kNumReferenceFrameTypes; i++) {
if (ref_frames[i]) {
const auto* v4l2_ref_pic =
static_cast<const V4L2AV1Picture*>(ref_frames[i].get());
ref_surfaces.emplace_back(std::move(v4l2_ref_pic->dec_surface()));
}
}
dec_surface->SetReferenceSurfaces(std::move(ref_surfaces));
// Copies the frame data into the V4L2 buffer.
if (!surface_handler_->SubmitSlice(
dec_surface.get(),
dec_surface->secure_handle() ? nullptr : stream.data(),
stream.size())) {
return DecodeStatus::kFail;
}
// Queues the buffers to the kernel driver.
DVLOGF(4) << "Submitting decode for surface: "
<< v4l2_pic->dec_surface()->ToString();
surface_handler_->DecodeSurface(v4l2_pic->dec_surface());
return DecodeStatus::kOk;
}
bool V4L2VideoDecoderDelegateAV1::OutputPicture(const AV1Picture& pic) {
VLOGF(3);
const auto* v4l2_pic = static_cast<const V4L2AV1Picture*>(&pic);
surface_handler_->SurfaceReady(
v4l2_pic->dec_surface(), v4l2_pic->bitstream_id(),
v4l2_pic->visible_rect(), v4l2_pic->get_colorspace());
return true;
}
} // namespace media