1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
media / gpu / v4l2 / v4l2_video_encode_accelerator.cc [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_video_encode_accelerator.h"
#include <fcntl.h>
#include <linux/videodev2.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <memory>
#include <numeric>
#include <optional>
#include <utility>
#include "base/bits.h"
#include "base/command_line.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/memory/shared_memory_mapping.h"
#include "base/memory/unsafe_shared_memory_region.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/strcat.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/trace_event/trace_event.h"
#include "media/base/bitstream_buffer.h"
#include "media/base/color_plane_layout.h"
#include "media/base/media_log.h"
#include "media/base/media_switches.h"
#include "media/base/media_util.h"
#include "media/base/video_frame_layout.h"
#include "media/base/video_types.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/chromeos/image_processor_factory.h"
#include "media/gpu/chromeos/platform_video_frame_utils.h"
#include "media/gpu/gpu_video_encode_accelerator_helpers.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_utils.h"
#include "media/parsers/h264_level_limits.h"
#include "media/parsers/h264_parser.h"
#ifndef V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L0_BR
#define V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L0_BR (V4L2_CID_CODEC_BASE + 391)
#endif
#ifndef V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L1_BR
#define V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L1_BR (V4L2_CID_CODEC_BASE + 392)
#endif
namespace {
const uint8_t kH264StartCode[] = {0, 0, 0, 1};
const size_t kH264StartCodeSize = sizeof(kH264StartCode);
// Copy a H.264 NALU of size |src_size| (without start code), located at |src|,
// into a buffer starting at |dst| of size |dst_size|, prepending it with
// a H.264 start code (as long as both fit). After copying, update |dst| to
// point to the address immediately after the copied data, and update |dst_size|
// to contain remaining destination buffer size.
static void CopyNALUPrependingStartCode(const uint8_t* src,
size_t src_size,
uint8_t** dst,
size_t* dst_size) {
size_t size_to_copy = kH264StartCodeSize + src_size;
if (size_to_copy > *dst_size) {
VLOGF(1) << "Could not copy a NALU, not enough space in destination buffer";
return;
}
memcpy(*dst, kH264StartCode, kH264StartCodeSize);
memcpy(*dst + kH264StartCodeSize, src, src_size);
*dst += size_to_copy;
*dst_size -= size_to_copy;
}
} // namespace
namespace media {
namespace {
// Convert VideoFrameLayout to ImageProcessor::PortConfig.
std::optional<ImageProcessor::PortConfig> VideoFrameLayoutToPortConfig(
const VideoFrameLayout& layout,
const gfx::Rect& visible_rect,
VideoFrame::StorageType storage_type) {
auto fourcc =
Fourcc::FromVideoPixelFormat(layout.format(), !layout.is_multi_planar());
if (!fourcc) {
DVLOGF(1) << "Failed to create Fourcc from video pixel format "
<< VideoPixelFormatToString(layout.format());
return std::nullopt;
}
return ImageProcessor::PortConfig(*fourcc, layout.coded_size(),
layout.planes(), visible_rect,
storage_type);
}
// Create Layout from |layout| with is_multi_planar = true.
std::optional<VideoFrameLayout> AsMultiPlanarLayout(
const VideoFrameLayout& layout) {
if (layout.is_multi_planar())
return std::make_optional<VideoFrameLayout>(layout);
return VideoFrameLayout::CreateMultiPlanar(
layout.format(), layout.coded_size(), layout.planes());
}
scoped_refptr<base::SequencedTaskRunner> CreateEncoderTaskRunner() {
if (base::FeatureList::IsEnabled(kUSeSequencedTaskRunnerForVEA)) {
return base::ThreadPool::CreateSequencedTaskRunner(
{base::WithBaseSyncPrimitives(), base::TaskPriority::USER_VISIBLE,
base::MayBlock()});
} else {
return base::ThreadPool::CreateSingleThreadTaskRunner(
{base::WithBaseSyncPrimitives(), base::MayBlock(),
base::TaskPriority::USER_VISIBLE},
base::SingleThreadTaskRunnerThreadMode::DEDICATED);
}
}
} // namespace
struct V4L2VideoEncodeAccelerator::BitstreamBufferRef {
BitstreamBufferRef(int32_t id, base::WritableSharedMemoryMapping shm_mapping)
: id(id), shm_mapping(std::move(shm_mapping)) {}
const int32_t id;
base::WritableSharedMemoryMapping shm_mapping;
};
V4L2VideoEncodeAccelerator::InputRecord::InputRecord() = default;
V4L2VideoEncodeAccelerator::InputRecord::InputRecord(const InputRecord&) =
default;
V4L2VideoEncodeAccelerator::InputRecord::~InputRecord() = default;
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo()
: InputFrameInfo(nullptr, false) {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo(
scoped_refptr<VideoFrame> frame,
bool force_keyframe)
: frame(frame), force_keyframe(force_keyframe) {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo(
scoped_refptr<VideoFrame> frame,
bool force_keyframe,
size_t index)
: frame(std::move(frame)),
force_keyframe(force_keyframe),
ip_output_buffer_index(index) {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo(
const InputFrameInfo&) = default;
V4L2VideoEncodeAccelerator::InputFrameInfo::~InputFrameInfo() = default;
// static
base::AtomicRefCount V4L2VideoEncodeAccelerator::num_instances_(0);
V4L2VideoEncodeAccelerator::V4L2VideoEncodeAccelerator(
scoped_refptr<V4L2Device> device)
: can_use_encoder_(num_instances_.Increment() < kMaxNumOfInstances),
child_task_runner_(base::SequencedTaskRunner::GetCurrentDefault()),
native_input_mode_(false),
output_buffer_byte_size_(0),
output_format_fourcc_(0),
current_framerate_(0),
encoder_state_(kUninitialized),
device_(std::move(device)),
input_memory_type_(V4L2_MEMORY_USERPTR),
is_flush_supported_(false),
// TODO(akahuang): Remove WithBaseSyncPrimitives() after replacing poll
// thread by V4L2DevicePoller.
encoder_task_runner_(CreateEncoderTaskRunner()),
device_poll_thread_("V4L2EncoderDevicePollThread") {
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
DETACH_FROM_SEQUENCE(encoder_sequence_checker_);
weak_this_ = weak_this_factory_.GetWeakPtr();
}
V4L2VideoEncodeAccelerator::~V4L2VideoEncodeAccelerator() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!device_poll_thread_.IsRunning());
VLOGF(2);
num_instances_.Decrement();
}
bool V4L2VideoEncodeAccelerator::Initialize(
const Config& config,
Client* client,
std::unique_ptr<MediaLog> media_log) {
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
DCHECK_EQ(encoder_state_, kUninitialized);
TRACE_EVENT0("media,gpu", "V4L2VEA::Initialize");
VLOGF(2) << ": " << config.AsHumanReadableString();
if (!can_use_encoder_) {
MEDIA_LOG(ERROR, media_log.get()) << "Too many encoders are allocated";
return false;
}
if (config.HasSpatialLayer()) {
MEDIA_LOG(ERROR, media_log.get())
<< "Spatial layer encoding is not yet supported";
return false;
}
// Currently only Qualcomm (SC7180) supports temporal layers, MTK drivers
// do not. There is no check here to determine if the driver supports temporal
// layering. It is expected that clients will first call
// GetSupportedScalabilityModesForV4L2Codec() to get the capabilities.
if (config.HasTemporalLayer()) {
if (VideoCodecProfileToVideoCodec(config.output_profile) ==
VideoCodec::kH264) {
constexpr uint8_t kNumSupportedH264TemporalLayers = 2;
const uint8_t num_temporal_layers =
config.spatial_layers[0].num_of_temporal_layers;
if (num_temporal_layers == kNumSupportedH264TemporalLayers) {
h264_l1t2_enabled_ = true;
} else {
MEDIA_LOG(ERROR, media_log.get())
<< "Unsupported number of temporal layers: "
<< base::strict_cast<size_t>(num_temporal_layers);
return false;
}
} else {
MEDIA_LOG(WARNING, media_log.get())
<< GetProfileName(config.output_profile)
<< " does not support temporal scalability. L1T1 will be produced.";
}
}
encoder_input_visible_rect_ = gfx::Rect(config.input_visible_size);
client_ptr_factory_ = std::make_unique<base::WeakPtrFactory<Client>>(client);
client_ = client_ptr_factory_->GetWeakPtr();
output_format_fourcc_ =
VideoCodecProfileToV4L2PixFmt(config.output_profile, false);
if (output_format_fourcc_ == V4L2_PIX_FMT_INVALID) {
MEDIA_LOG(ERROR, media_log.get())
<< "invalid output_profile=" << GetProfileName(config.output_profile);
return false;
}
if (!device_->Open(V4L2Device::Type::kEncoder, output_format_fourcc_)) {
MEDIA_LOG(ERROR, media_log.get())
<< "Failed to open device for profile="
<< GetProfileName(config.output_profile)
<< ", fourcc=" << FourccToString(output_format_fourcc_);
return false;
}
gfx::Size min_resolution;
gfx::Size max_resolution;
GetSupportedResolution(base::BindRepeating(&V4L2Device::Ioctl, device_),
output_format_fourcc_, &min_resolution,
&max_resolution);
if (config.input_visible_size.width() < min_resolution.width() ||
config.input_visible_size.height() < min_resolution.height() ||
config.input_visible_size.width() > max_resolution.width() ||
config.input_visible_size.height() > max_resolution.height()) {
MEDIA_LOG(ERROR, media_log.get())
<< "Unsupported resolution: " << config.input_visible_size.ToString()
<< ", min=" << min_resolution.ToString()
<< ", max=" << max_resolution.ToString();
return false;
}
// Ask if V4L2_ENC_CMD_STOP (Flush) is supported.
struct v4l2_encoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_ENC_CMD_STOP;
is_flush_supported_ = (device_->Ioctl(VIDIOC_TRY_ENCODER_CMD, &cmd) == 0);
if (!is_flush_supported_)
VLOGF(2) << "V4L2_ENC_CMD_STOP is not supported.";
struct v4l2_capability caps;
memset(&caps, 0, sizeof(caps));
const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
if (device_->Ioctl(VIDIOC_QUERYCAP, &caps) != 0) {
MEDIA_LOG(ERROR, media_log.get())
<< "ioctl() failed: VIDIOC_QUERYCAP, errno=" << errno;
return false;
}
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
MEDIA_LOG(ERROR, media_log.get())
<< "caps check failed: 0x" << std::hex << caps.capabilities;
return false;
}
driver_name_ = device_->GetDriverName();
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::InitializeTask,
weak_this_, config));
return true;
}
void V4L2VideoEncodeAccelerator::InitializeTask(const Config& config) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
TRACE_EVENT0("media,gpu", "V4L2VEA::InitializeTask");
// Set kInitialized here so that NotifyErrorStatus() is invoked from here.
encoder_state_ = kInitialized;
native_input_mode_ =
config.storage_type == Config::StorageType::kGpuMemoryBuffer;
input_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
output_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
if (!input_queue_ || !output_queue_) {
SetErrorState({EncoderStatus::Codes::kEncoderInitializationError,
"Failed to get V4L2Queue"});
return;
}
if (!SetFormats(config.input_format, config.output_profile)) {
return;
}
if (config.input_format != device_input_layout_->format()) {
VLOGF(2) << "Input format: " << config.input_format << " is not supported "
<< "by the HW. Will try to convert to "
<< device_input_layout_->format();
auto input_layout = VideoFrameLayout::CreateMultiPlanar(
config.input_format, encoder_input_visible_rect_.size(),
std::vector<ColorPlaneLayout>(
VideoFrame::NumPlanes(config.input_format)));
if (!input_layout) {
SetErrorState({EncoderStatus::Codes::kUnsupportedFrameFormat,
"Invalid image processor input layout"});
return;
}
// ImageProcessor for a pixel format conversion.
if (!CreateImageProcessor(*input_layout, device_input_layout_->format(),
device_input_layout_->coded_size(),
encoder_input_visible_rect_,
encoder_input_visible_rect_)) {
SetErrorState(
{EncoderStatus::Codes::kEncoderInitializationError,
base::StrCat(
{"Failed to create image processor ", "for format conversion",
VideoPixelFormatToString(input_layout->format()), " -> ",
VideoPixelFormatToString(device_input_layout_->format())})});
return;
}
const gfx::Size ip_output_buffer_size(
static_cast<int>(image_processor_->output_config().planes[0].stride),
image_processor_->output_config().size.height());
if (!NegotiateInputFormat(device_input_layout_->format(),
ip_output_buffer_size)) {
SetErrorState(
{EncoderStatus::Codes::kUnsupportedFrameFormat,
base::StrCat({"Failed to reconfigure v4l2 encoder driver with the ",
"ImageProcessor output buffer: ",
ip_output_buffer_size.ToString()})});
return;
}
}
if (!InitInputMemoryType(config) || !InitControls(config) ||
!CreateOutputBuffers()) {
SetErrorState(EncoderStatus::Codes::kEncoderInitializationError);
return;
}
if (config.bitrate.mode() != Bitrate::Mode::kConstant &&
config.bitrate.mode() != Bitrate::Mode::kVariable) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
base::StrCat({"Invalid bitrate mode: ",
base::NumberToString(base::strict_cast<int>(
config.bitrate.mode()))})});
return;
}
if (config.bitrate.mode() == Bitrate::Mode::kVariable &&
!base::FeatureList::IsEnabled(kChromeOSHWVBREncoding)) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
"VBR encoding is disabled"});
return;
}
const uint32_t bitrate_mode =
config.bitrate.mode() == Bitrate::Mode::kConstant
? V4L2_MPEG_VIDEO_BITRATE_MODE_CBR
: V4L2_MPEG_VIDEO_BITRATE_MODE_VBR;
const VideoBitrateAllocation bitrate_allocation =
AllocateBitrateForDefaultEncoding(config);
if (!device_->SetExtCtrls(
V4L2_CID_MPEG_CLASS,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_BITRATE_MODE, bitrate_mode)})) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"Failed to configure bitrate mode: ",
base::NumberToString(base::strict_cast<int>(
bitrate_allocation.GetMode()))})});
return;
}
current_bitrate_allocation_ = VideoBitrateAllocation(config.bitrate.mode());
RequestEncodingParametersChangeTask(bitrate_allocation, config.framerate,
std::nullopt);
// input_frame_size_ is the size of input_config of |image_processor_|.
// On native_input_mode_, since the passed size in RequireBitstreamBuffers()
// is ignored by the client, we don't update the expected frame size.
if (!native_input_mode_ && image_processor_.get())
input_frame_size_ = image_processor_->input_config().size;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::RequireBitstreamBuffers, client_,
kInputBufferCount, input_frame_size_,
output_buffer_byte_size_));
// Notify VideoEncoderInfo after initialization.
VideoEncoderInfo encoder_info;
encoder_info.implementation_name = "V4L2VideoEncodeAccelerator";
DCHECK(!encoder_info.has_trusted_rate_controller);
DCHECK(encoder_info.is_hardware_accelerated);
DCHECK(encoder_info.supports_native_handle);
DCHECK(!encoder_info.supports_simulcast);
// V4L2VideoEncodeAccelerator only supports temporal-SVC.
if (config.HasTemporalLayer()) {
CHECK(!config.spatial_layers.empty());
for (size_t i = 0; i < config.spatial_layers.size(); ++i) {
encoder_info.fps_allocation[i] =
GetFpsAllocation(config.spatial_layers[i].num_of_temporal_layers);
}
} else {
constexpr uint8_t kFullFramerate = 255;
encoder_info.fps_allocation[0] = {kFullFramerate};
}
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::NotifyEncoderInfoChange, client_, encoder_info));
}
bool V4L2VideoEncodeAccelerator::CreateImageProcessor(
const VideoFrameLayout& input_layout,
const VideoPixelFormat output_format,
const gfx::Size& output_size,
const gfx::Rect& input_visible_rect,
const gfx::Rect& output_visible_rect) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
auto ip_input_layout = AsMultiPlanarLayout(input_layout);
if (!ip_input_layout) {
LOG(ERROR) << "Failed to get multi-planar input layout, input_layout="
<< input_layout;
return false;
}
VideoFrame::StorageType input_storage_type =
native_input_mode_ ? VideoFrame::STORAGE_GPU_MEMORY_BUFFER
: VideoFrame::STORAGE_SHMEM;
auto input_config = VideoFrameLayoutToPortConfig(
*ip_input_layout, input_visible_rect, input_storage_type);
if (!input_config) {
LOG(ERROR) << "Failed to create ImageProcessor input config";
return false;
}
auto platform_layout = GetPlatformVideoFrameLayout(
output_format, output_size,
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE);
if (!platform_layout) {
LOG(ERROR) << "Failed to get Platform VideoFrameLayout";
return false;
}
auto output_layout = AsMultiPlanarLayout(platform_layout.value());
if (!output_layout) {
LOG(ERROR) << "Failed to get multi-planar platform layout, platform_layout="
<< *platform_layout;
return false;
}
auto output_config =
VideoFrameLayoutToPortConfig(*output_layout, output_visible_rect,
VideoFrame::STORAGE_GPU_MEMORY_BUFFER);
if (!output_config) {
LOG(ERROR) << "Failed to create ImageProcessor output config";
return false;
}
image_processor_ = ImageProcessorFactory::Create(
*input_config, *output_config, kImageProcBufferCount,
base::BindRepeating(&V4L2VideoEncodeAccelerator::ImageProcessorError,
weak_this_),
encoder_task_runner_);
if (!image_processor_) {
LOG(ERROR) << "Failed initializing image processor";
return false;
}
VLOGF(2) << "ImageProcessor is created: " << image_processor_->backend_type();
num_frames_in_image_processor_ = 0;
// The output of image processor is the input of encoder. Output coded
// width of processor must be the same as input coded width of encoder.
// Output coded height of processor can be larger but not smaller than the
// input coded height of encoder. For example, suppose input size of encoder
// is 320x193. It is OK if the output of processor is 320x208.
const auto& ip_output_size = image_processor_->output_config().size;
if (ip_output_size.width() != output_layout->coded_size().width() ||
ip_output_size.height() < output_layout->coded_size().height()) {
LOG(ERROR) << "Invalid image processor output coded size "
<< ip_output_size.ToString()
<< ", expected output coded size is "
<< output_layout->coded_size().ToString();
return false;
}
// Initialize |free_image_processor_output_buffer_indices_|.
free_image_processor_output_buffer_indices_.resize(kImageProcBufferCount);
std::iota(free_image_processor_output_buffer_indices_.begin(),
free_image_processor_output_buffer_indices_.end(), 0);
return AllocateImageProcessorOutputBuffers(kImageProcBufferCount);
}
bool V4L2VideoEncodeAccelerator::AllocateImageProcessorOutputBuffers(
size_t count) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(image_processor_);
DCHECK_EQ(image_processor_->output_mode(),
ImageProcessor::OutputMode::IMPORT);
// The existing buffers in |image_processor_output_buffers_| may be alive
// until they are actually consumed by the encoder driver, after they are
// destroyed here.
image_processor_output_buffers_.clear();
image_processor_output_buffers_.resize(count);
const ImageProcessor::PortConfig& output_config =
image_processor_->output_config();
for (size_t i = 0; i < count; i++) {
switch (output_config.storage_type) {
case VideoFrame::STORAGE_GPU_MEMORY_BUFFER:
image_processor_output_buffers_[i] = CreateGpuMemoryBufferVideoFrame(
output_config.fourcc.ToVideoPixelFormat(), output_config.size,
output_config.visible_rect, output_config.visible_rect.size(),
base::TimeDelta(),
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE);
break;
default:
LOG(ERROR) << "Unsupported output storage type of image processor: "
<< output_config.storage_type;
return false;
}
if (!image_processor_output_buffers_[i]) {
LOG(ERROR) << "Failed to create VideoFrame";
return false;
}
}
return true;
}
bool V4L2VideoEncodeAccelerator::InitInputMemoryType(const Config& config) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (image_processor_) {
const auto storage_type = image_processor_->output_config().storage_type;
if (storage_type == VideoFrame::STORAGE_GPU_MEMORY_BUFFER) {
input_memory_type_ = V4L2_MEMORY_DMABUF;
} else if (VideoFrame::IsStorageTypeMappable(storage_type)) {
input_memory_type_ = V4L2_MEMORY_USERPTR;
} else {
LOG(ERROR) << "Unsupported image processor's output StorageType: "
<< storage_type;
return false;
}
} else {
switch (config.storage_type) {
case Config::StorageType::kShmem:
input_memory_type_ = V4L2_MEMORY_USERPTR;
break;
case Config::StorageType::kGpuMemoryBuffer:
input_memory_type_ = V4L2_MEMORY_DMABUF;
break;
}
}
return true;
}
void V4L2VideoEncodeAccelerator::ImageProcessorError() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
LOG(ERROR) << "Image processor error";
// TODO(b/276005687): Let image processor return a minute error status and
// convert it to EncoderStatus.
SetErrorState(EncoderStatus::Codes::kFormatConversionError);
}
void V4L2VideoEncodeAccelerator::Encode(scoped_refptr<VideoFrame> frame,
bool force_keyframe) {
DVLOGF(4) << "force_keyframe=" << force_keyframe;
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::EncodeTask,
weak_this_, std::move(frame), force_keyframe));
}
void V4L2VideoEncodeAccelerator::UseOutputBitstreamBuffer(
BitstreamBuffer buffer) {
DVLOGF(4) << "id=" << buffer.id();
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::UseOutputBitstreamBufferTask,
weak_this_, std::move(buffer)));
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChange(
const Bitrate& bitrate,
uint32_t framerate,
const std::optional<gfx::Size>& size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
VideoBitrateAllocation allocation(bitrate.mode());
allocation.SetBitrate(0u, 0u, bitrate.target_bps());
allocation.SetPeakBps(bitrate.peak_bps());
RequestEncodingParametersChange(allocation, framerate, size);
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChange(
const VideoBitrateAllocation& bitrate_allocation,
uint32_t framerate,
const std::optional<gfx::Size>& size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&V4L2VideoEncodeAccelerator::RequestEncodingParametersChangeTask,
weak_this_, bitrate_allocation, framerate, size));
}
void V4L2VideoEncodeAccelerator::Destroy() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
// We're destroying; cancel all callbacks.
client_ptr_factory_.reset();
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::DestroyTask, weak_this_));
}
void V4L2VideoEncodeAccelerator::Flush(FlushCallback flush_callback) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::FlushTask,
weak_this_, std::move(flush_callback)));
}
void V4L2VideoEncodeAccelerator::FlushTask(FlushCallback flush_callback) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (encoder_state_ == kInitialized) {
// Flush() is called before either Encode() or UseOutputBitstreamBuffer() is
// called. Just return as successful.
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback), true));
return;
}
if (flush_callback_ || encoder_state_ != kEncoding) {
SetErrorState({EncoderStatus::Codes::kEncoderIllegalState,
"Flush failed: there is a pending flush, or "
"VideoEncodeAccelerator is not in kEncoding state"});
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback), false));
return;
}
flush_callback_ = std::move(flush_callback);
// Push a null frame to indicate Flush.
EncodeTask(nullptr, false);
}
bool V4L2VideoEncodeAccelerator::IsFlushSupported() {
return is_flush_supported_;
}
VideoEncodeAccelerator::SupportedProfiles
V4L2VideoEncodeAccelerator::GetSupportedProfiles() {
auto device = base::MakeRefCounted<V4L2Device>();
return device->GetSupportedEncodeProfiles();
}
void V4L2VideoEncodeAccelerator::FrameProcessed(
bool force_keyframe,
base::TimeDelta timestamp,
size_t output_buffer_index,
scoped_refptr<VideoFrame> frame) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DVLOGF(4) << "force_keyframe=" << force_keyframe
<< ", output_buffer_index=" << output_buffer_index;
DCHECK_GE(output_buffer_index, 0u);
TRACE_EVENT_NESTABLE_ASYNC_END2(
"media,gpu", "V4L2VEA::ImageProcessor::Process",
timestamp.InMicroseconds(), "timestamp", timestamp.InMicroseconds(),
"output_size", image_processor_->output_config().size.ToString());
encoder_input_queue_.emplace(std::move(frame), force_keyframe,
output_buffer_index);
CHECK_GT(num_frames_in_image_processor_, 0u);
num_frames_in_image_processor_--;
MaybeFlushImageProcessor();
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::Enqueue, weak_this_));
}
void V4L2VideoEncodeAccelerator::ReuseImageProcessorOutputBuffer(
size_t output_buffer_index) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DVLOGF(4) << "output_buffer_index=" << output_buffer_index;
free_image_processor_output_buffer_indices_.push_back(output_buffer_index);
InputImageProcessorTask();
}
BitstreamBufferMetadata V4L2VideoEncodeAccelerator::GetMetadata(
const uint8_t* data,
size_t data_size_bytes,
bool key_frame,
base::TimeDelta timestamp) {
auto buffer_metadata =
BitstreamBufferMetadata(data_size_bytes, key_frame, timestamp);
if (h264_l1t2_enabled_) {
H264Metadata h264_metadata;
h264_metadata.temporal_idx = 0;
h264_metadata.layer_sync = false;
H264Parser parser;
parser.SetStream(data, data_size_bytes);
H264NALU nalu;
while (parser.AdvanceToNextNALU(&nalu) == H264Parser::kOk) {
// L1T2 describes a bitstream where every other frame is not used as a
// reference frame. This allows those non reference frames to be discarded
// and never decoded. The V4L2 api does not provide a way to request that
// frames are not used as reference frames. It does provide a set of
// controls (V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_*) that allows
// specifying that.
// In order to determine if a frame can be dropped the frames can be
// queried to see if they are marked as reference frames
// (i.e. nal_ref_idc == 0).
if (nalu.nal_unit_type == H264NALU::kNonIDRSlice &&
nalu.nal_ref_idc == 0) {
h264_metadata.temporal_idx = 1;
h264_metadata.layer_sync = true;
break;
}
}
buffer_metadata.h264 = h264_metadata;
}
return buffer_metadata;
}
size_t V4L2VideoEncodeAccelerator::CopyIntoOutputBuffer(
const uint8_t* bitstream_data,
size_t bitstream_size,
std::unique_ptr<BitstreamBufferRef> buffer_ref) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
uint8_t* dst_ptr = buffer_ref->shm_mapping.GetMemoryAs<uint8_t>();
size_t remaining_dst_size = buffer_ref->shm_mapping.size();
if (!inject_sps_and_pps_) {
if (bitstream_size <= remaining_dst_size) {
memcpy(dst_ptr, bitstream_data, bitstream_size);
return bitstream_size;
} else {
SetErrorState({EncoderStatus::Codes::kEncoderFailedEncode,
"Output data did not fit in the BitstreamBuffer"});
return 0;
}
}
// Cache the newest SPS and PPS found in the stream, and inject them before
// each IDR found.
H264Parser parser;
parser.SetStream(bitstream_data, bitstream_size);
H264NALU nalu;
bool inserted_sps = false;
bool inserted_pps = false;
while (parser.AdvanceToNextNALU(&nalu) == H264Parser::kOk) {
// nalu.size is always without the start code, regardless of the NALU type.
if (nalu.size + kH264StartCodeSize > remaining_dst_size) {
VLOGF(1) << "Output data did not fit in the BitstreamBuffer";
break;
}
switch (nalu.nal_unit_type) {
case H264NALU::kSPS:
cached_sps_.resize(nalu.size);
memcpy(cached_sps_.data(), nalu.data, nalu.size);
cached_h264_header_size_ =
cached_sps_.size() + cached_pps_.size() + 2 * kH264StartCodeSize;
inserted_sps = true;
break;
case H264NALU::kPPS:
cached_pps_.resize(nalu.size);
memcpy(cached_pps_.data(), nalu.data, nalu.size);
cached_h264_header_size_ =
cached_sps_.size() + cached_pps_.size() + 2 * kH264StartCodeSize;
inserted_pps = true;
break;
case H264NALU::kIDRSlice:
if (inserted_sps && inserted_pps) {
// Already inserted SPS and PPS. No need to inject.
break;
}
// Only inject if we have both headers cached, and enough space for both
// the headers and the NALU itself.
if (cached_sps_.empty() || cached_pps_.empty()) {
VLOGF(1) << "Cannot inject IDR slice without SPS and PPS";
break;
}
if (cached_h264_header_size_ + nalu.size + kH264StartCodeSize >
remaining_dst_size) {
VLOGF(1) << "Not enough space to inject a stream header before IDR";
break;
}
if (!inserted_sps) {
CopyNALUPrependingStartCode(cached_sps_.data(), cached_sps_.size(),
&dst_ptr, &remaining_dst_size);
}
if (!inserted_pps) {
CopyNALUPrependingStartCode(cached_pps_.data(), cached_pps_.size(),
&dst_ptr, &remaining_dst_size);
}
VLOGF(2) << "Stream header injected before IDR";
break;
}
CopyNALUPrependingStartCode(nalu.data, nalu.size, &dst_ptr,
&remaining_dst_size);
}
return buffer_ref->shm_mapping.size() - remaining_dst_size;
}
void V4L2VideoEncodeAccelerator::EncodeTask(scoped_refptr<VideoFrame> frame,
bool force_keyframe) {
DVLOGF(4) << "force_keyframe=" << force_keyframe;
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK_NE(encoder_state_, kUninitialized);
if (encoder_state_ == kError) {
DVLOGF(1) << "early out: kError state";
return;
}
if (frame) {
TRACE_EVENT1("media,gpu", "V4L2VEA::EncodeTask", "timestamp",
frame->timestamp().InMicroseconds());
// |frame| can be nullptr to indicate a flush.
const bool is_expected_storage_type =
native_input_mode_
? frame->storage_type() == VideoFrame::STORAGE_GPU_MEMORY_BUFFER
: frame->IsMappable();
if (!is_expected_storage_type) {
SetErrorState({EncoderStatus::Codes::kInvalidInputFrame,
base::StrCat({"Unexpected storage: ",
VideoFrame::StorageTypeToString(
frame->storage_type())})});
return;
}
if (!ReconfigureFormatIfNeeded(*frame)) {
SetErrorState({EncoderStatus::Codes::kUnsupportedFrameFormat,
base::StrCat({"Unsupported frame: ",
frame->AsHumanReadableString()})});
return;
}
// If a video frame to be encoded is fed, then call VIDIOC_REQBUFS if it has
// not been called yet.
if (input_buffer_map_.empty() && !CreateInputBuffers()) {
CHECK_EQ(encoder_state_, kError);
return;
}
if (encoder_state_ == kInitialized) {
if (!StartDevicePoll())
return;
encoder_state_ = kEncoding;
}
}
if (image_processor_) {
image_processor_input_queue_.emplace(std::move(frame), force_keyframe);
InputImageProcessorTask();
} else {
encoder_input_queue_.emplace(std::move(frame), force_keyframe);
Enqueue();
}
}
bool V4L2VideoEncodeAccelerator::ReconfigureFormatIfNeeded(
const VideoFrame& frame) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (input_buffer_map_.empty()) {
// Updates |input_natural_size_| on the first VideoFrame.
// |input_natural_size_| is a dimension to be encoded (i.e.
// |encoder_input_visible_rect_.size()|), but can be different from it
// in simulcast case.
input_natural_size_ = frame.natural_size();
}
if (!native_input_mode_) {
// frame.coded_size() must be the size specified in
// RequireBitstreamBuffers() in non native-input mode.
return frame.coded_size() == input_frame_size_;
}
if (!input_buffer_map_.empty()) {
// ReconfigureFormatIfNeeded() has been called with the first VideoFrame.
// We checks here we need to (re)create ImageProcessor because the visible
// rectangle of |frame| differs from the first VideoFrame.
// |frame.natural_size()| must be unchanged during encoding in the same
// VideoEncodeAccelerator instance. When it is changed, a client has to
// recreate VideoEncodeAccelerator.
if (frame.natural_size() != input_natural_size_) {
LOG(ERROR) << "Encoder resolution is changed during encoding"
<< ", frame.natural_size()=" << frame.natural_size().ToString()
<< ", input_natural_size_=" << input_natural_size_.ToString();
return false;
}
if (frame.coded_size() == input_frame_size_) {
return true;
}
// If a dimension of the underlying VideoFrame varies during video encoding
// (i.e. frame.coded_size() != input_frame_size_), we (re)create
// ImageProcessor to crop the VideoFrame, |frame.visible_rect()| ->
// |encoder_input_visible_rect_|.
// TODO(hiroh): if |frame.coded_size()| is the same as VideoFrame::
// DetermineAlignedSize(input_format, encoder_input_visible_rect_.size())
// and don't need a pixel format conversion, image processor is not
// necessary but we should rather NegotiateInputFormat().
} else if (frame.coded_size() == input_frame_size_) {
// This path is for the first frame on Encode().
// Height and width that V4L2VEA needs to configure.
const gfx::Size buffer_size(static_cast<int>(frame.stride(0)),
frame.coded_size().height());
// A buffer given by client is allocated with the same dimension using
// minigbm. However, it is possible that stride and height are different
// from ones adjusted by a driver.
if (!image_processor_) {
if (device_input_layout_->coded_size().width() == buffer_size.width() &&
device_input_layout_->coded_size().height() == buffer_size.height()) {
return true;
}
return NegotiateInputFormat(device_input_layout_->format(), buffer_size)
.has_value();
}
if (image_processor_->input_config().size.height() ==
buffer_size.height() &&
image_processor_->input_config().planes[0].stride ==
static_cast<size_t>(buffer_size.width())) {
return true;
}
}
// The |frame| dimension is different from the resolution configured to
// V4L2VEA. This is the case that V4L2VEA needs to create ImageProcessor for
// cropping and scaling. Update |input_frame_size_| to check if succeeding
// frames' dimensions are not different from the current one.
input_frame_size_ = frame.coded_size();
if (!CreateImageProcessor(frame.layout(), device_input_layout_->format(),
device_input_layout_->coded_size(),
frame.visible_rect(),
encoder_input_visible_rect_)) {
LOG(ERROR) << "Failed to create image processor";
return false;
}
gfx::Size output_size(
static_cast<int>(image_processor_->output_config().planes[0].stride),
image_processor_->output_config().size.height());
if (output_size != device_input_layout_->coded_size()) {
LOG(ERROR) << "Image Processor's output buffer's size is different from "
<< "input buffer size configure to the encoder driver. "
<< "ip's output buffer size: " << output_size.ToString()
<< ", encoder's input buffer size: "
<< device_input_layout_->coded_size().ToString();
return false;
}
return true;
}
void V4L2VideoEncodeAccelerator::MaybeFlushImageProcessor() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(image_processor_);
if (image_processor_input_queue_.size() == 1 &&
!image_processor_input_queue_.front().frame &&
num_frames_in_image_processor_ == 0) {
// Flush the encoder once the image processor is done with its own flush.
DVLOGF(3) << "All frames to be flush have been processed by "
<< "|image_processor_|. Move the flush request to the encoder";
image_processor_input_queue_.pop();
encoder_input_queue_.emplace(nullptr, false);
Enqueue();
}
}
void V4L2VideoEncodeAccelerator::InputImageProcessorTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
MaybeFlushImageProcessor();
if (free_image_processor_output_buffer_indices_.empty())
return;
if (image_processor_input_queue_.empty())
return;
// The flush request is at the top. Waiting until all frames are processed by
// the image processor.
if (!image_processor_input_queue_.front().frame)
return;
const size_t output_buffer_index =
free_image_processor_output_buffer_indices_.back();
free_image_processor_output_buffer_indices_.pop_back();
InputFrameInfo frame_info = std::move(image_processor_input_queue_.front());
image_processor_input_queue_.pop();
auto frame = std::move(frame_info.frame);
const bool force_keyframe = frame_info.force_keyframe;
auto timestamp = frame->timestamp();
TRACE_EVENT_NESTABLE_ASYNC_BEGIN1(
"media,gpu", "V4L2VEA::ImageProcessor::Process",
timestamp.InMicroseconds(), "timestamp", timestamp.InMicroseconds());
auto output_frame = image_processor_output_buffers_[output_buffer_index];
if (!image_processor_->Process(
std::move(frame), std::move(output_frame),
base::BindOnce(&V4L2VideoEncodeAccelerator::FrameProcessed,
weak_this_, force_keyframe, timestamp,
output_buffer_index))) {
SetErrorState({EncoderStatus::Codes::kFormatConversionError,
"Failed in ImageProcessor::Process"});
return;
}
num_frames_in_image_processor_++;
}
void V4L2VideoEncodeAccelerator::UseOutputBitstreamBufferTask(
BitstreamBuffer buffer) {
DVLOGF(4) << "id=" << buffer.id();
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (buffer.size() < output_buffer_byte_size_) {
SetErrorState({EncoderStatus::Codes::kInvalidOutputBuffer,
"Provided bitstream buffer too small"});
return;
}
base::UnsafeSharedMemoryRegion shm_region = buffer.TakeRegion();
base::WritableSharedMemoryMapping shm_mapping =
shm_region.MapAt(buffer.offset(), buffer.size());
if (!shm_mapping.IsValid()) {
SetErrorState({EncoderStatus::Codes::kSystemAPICallError,
"Failed to map a shared memory buffer"});
return;
}
bitstream_buffer_pool_.push_back(std::make_unique<BitstreamBufferRef>(
buffer.id(), std::move(shm_mapping)));
PumpBitstreamBuffers();
if (encoder_state_ == kInitialized) {
if (!StartDevicePoll())
return;
encoder_state_ = kEncoding;
}
}
void V4L2VideoEncodeAccelerator::DestroyTask() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
weak_this_factory_.InvalidateWeakPtrs();
// If a flush is pending, notify client that it did not finish.
if (flush_callback_) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), false));
}
// Stop streaming and the device_poll_thread_.
LOG_IF(ERROR, !StopDevicePoll()) << "Failure in termination";
DestroyInputBuffers();
DestroyOutputBuffers();
delete this;
}
void V4L2VideoEncodeAccelerator::ServiceDeviceTask() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK_NE(encoder_state_, kUninitialized);
DCHECK_NE(encoder_state_, kInitialized);
if (encoder_state_ == kError) {
DVLOGF(1) << "early out: kError state";
return;
}
Dequeue();
Enqueue();
// Clear the interrupt fd.
if (!device_->ClearDevicePollInterrupt())
return;
// Device can be polled as soon as either input or output buffers are queued.
bool poll_device = (input_queue_->QueuedBuffersCount() +
output_queue_->QueuedBuffersCount() >
0);
// ServiceDeviceTask() should only ever be scheduled from DevicePollTask(),
// so either:
// * device_poll_thread_ is running normally
// * device_poll_thread_ scheduled us, but then a DestroyTask() shut it down,
// in which case we're in kError state, and we should have early-outed
// already.
DCHECK(device_poll_thread_.task_runner());
// Queue the DevicePollTask() now.
// base::Unretained(this) is safe, because device_poll_thread_ is owned by
// *this and stops before *this destruction.
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::DevicePollTask,
base::Unretained(this), poll_device));
DVLOGF(3) << encoder_input_queue_.size() << "] => DEVICE["
<< input_queue_->FreeBuffersCount() << "+"
<< input_queue_->QueuedBuffersCount() << "/"
<< input_buffer_map_.size() << "->"
<< output_queue_->FreeBuffersCount() << "+"
<< output_queue_->QueuedBuffersCount() << "/"
<< output_queue_->AllocatedBuffersCount() << "] => OUT["
<< bitstream_buffer_pool_.size() << "]";
}
void V4L2VideoEncodeAccelerator::Enqueue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(input_queue_ && output_queue_);
TRACE_EVENT0("media,gpu", "V4L2VEA::Enqueue");
DVLOGF(4) << "free_input_buffers: " << input_queue_->FreeBuffersCount()
<< ", input_queue: " << encoder_input_queue_.size();
bool do_streamon = false;
// Enqueue all the inputs we can.
const size_t old_inputs_queued = input_queue_->QueuedBuffersCount();
while (!encoder_input_queue_.empty() &&
input_queue_->FreeBuffersCount() > 0) {
// A null frame indicates a flush.
if (encoder_input_queue_.front().frame == nullptr) {
DVLOGF(3) << "All input frames needed to be flushed are enqueued.";
encoder_input_queue_.pop();
// If we are not streaming, the device is not running and there is no need
// to call V4L2_ENC_CMD_STOP to request a flush. This also means there is
// nothing left to process, so we can return flush success back to the
// client.
if (!input_queue_->IsStreaming()) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), true));
return;
}
struct v4l2_encoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_ENC_CMD_STOP;
if (device_->Ioctl(VIDIOC_ENCODER_CMD, &cmd) != 0) {
SetErrorState(
{EncoderStatus::Codes::kEncoderFailedFlush,
base::StrCat({"ioctl() failed: VIDIOC_ENCODER_CMD, errno=",
base::NumberToString(errno)})});
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), false));
return;
}
encoder_state_ = kFlushing;
break;
}
std::optional<V4L2WritableBufferRef> input_buffer;
switch (input_memory_type_) {
case V4L2_MEMORY_DMABUF:
if (encoder_input_queue_.front()
.frame->metadata()
.tracking_token.has_value()) {
input_buffer = input_queue_->GetFreeBufferForFrame(
*encoder_input_queue_.front().frame->metadata().tracking_token);
}
// We may have failed to preserve buffer affinity, fallback to any
// buffer in that case.
if (!input_buffer)
input_buffer = input_queue_->GetFreeBuffer();
break;
default:
input_buffer = input_queue_->GetFreeBuffer();
break;
}
// input_buffer cannot be std::nullopt since we checked for
// input_queue_->FreeBuffersCount() > 0 before entering the loop.
DCHECK(input_buffer);
if (!EnqueueInputRecord(std::move(*input_buffer)))
return;
}
if (old_inputs_queued == 0 && input_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt())
return;
// Shall call VIDIOC_STREAMON if we haven't yet.
do_streamon = !input_queue_->IsStreaming();
}
if (!input_queue_->IsStreaming() && !do_streamon) {
// We don't have to enqueue any buffers in the output queue until we enqueue
// buffers in the input queue. This enables to call S_FMT in Encode() on
// the first frame.
return;
}
// Enqueue all the outputs we can.
const size_t old_outputs_queued = output_queue_->QueuedBuffersCount();
while (auto output_buffer = output_queue_->GetFreeBuffer()) {
if (!EnqueueOutputRecord(std::move(*output_buffer)))
return;
}
if (old_outputs_queued == 0 && output_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt())
return;
}
// STREAMON in CAPTURE queue first and then OUTPUT queue.
// This is a workaround of a tegra driver bug that STREAMON in CAPTURE queue
// will never return (i.e. blocks |encoder_thread_| forever) if the STREAMON
// in CAPTURE queue is called after STREAMON in OUTPUT queue.
// Once nyan_kitty, which uses tegra driver, reaches EOL, crrev.com/c/1753982
// should be reverted.
if (do_streamon) {
DCHECK(!output_queue_->IsStreaming() && !input_queue_->IsStreaming());
// When VIDIOC_STREAMON can be executed in OUTPUT queue, it is fine to call
// STREAMON in CAPTURE queue.
if (!output_queue_->Streamon()) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to turn on streaming for CAPTURE queue"});
return;
}
if (!input_queue_->Streamon()) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to turn on streaming for OUTPUT queue"});
return;
}
}
}
void V4L2VideoEncodeAccelerator::Dequeue() {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
TRACE_EVENT0("media,gpu", "V4L2VEA::Dequeue");
// Dequeue completed input (VIDEO_OUTPUT) buffers, and recycle to the free
// list.
while (input_queue_->QueuedBuffersCount() > 0) {
DVLOGF(4) << "inputs queued: " << input_queue_->QueuedBuffersCount();
DCHECK(input_queue_->IsStreaming());
auto ret = input_queue_->DequeueBuffer();
if (!ret.first) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"Failed to dequeue buffer in OUTPUT queue, errno=",
base::NumberToString(errno)})});
return;
}
if (!ret.second) {
// We're just out of buffers to dequeue.
break;
}
InputRecord& input_record = input_buffer_map_[ret.second->BufferId()];
input_record.frame = nullptr;
if (input_record.ip_output_buffer_index)
ReuseImageProcessorOutputBuffer(*input_record.ip_output_buffer_index);
}
// Dequeue completed output (VIDEO_CAPTURE) buffers, and recycle to the
// free list. Notify the client that an output buffer is complete.
bool buffer_dequeued = false;
while (output_queue_->QueuedBuffersCount() > 0) {
DCHECK(output_queue_->IsStreaming());
auto ret = output_queue_->DequeueBuffer();
if (!ret.first) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"Failed to dequeue buffer in CAPTURE queue, errno=",
base::NumberToString(errno)})});
return;
}
if (!ret.second) {
// We're just out of buffers to dequeue.
break;
}
const uint64_t timestamp_us =
ret.second->GetTimeStamp().tv_usec +
ret.second->GetTimeStamp().tv_sec * base::Time::kMicrosecondsPerSecond;
TRACE_EVENT_NESTABLE_ASYNC_END2(
"media,gpu", "PlatformEncoding.Encode", timestamp_us, "timestamp",
timestamp_us, "size", encoder_input_visible_rect_.size().ToString());
output_buffer_queue_.push_back(std::move(ret.second));
buffer_dequeued = true;
}
if (buffer_dequeued)
PumpBitstreamBuffers();
}
void V4L2VideoEncodeAccelerator::PumpBitstreamBuffers() {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
while (!output_buffer_queue_.empty()) {
auto output_buf = std::move(output_buffer_queue_.front());
output_buffer_queue_.pop_front();
size_t bitstream_size = base::checked_cast<size_t>(
output_buf->GetPlaneBytesUsed(0) - output_buf->GetPlaneDataOffset(0));
if (bitstream_size > 0) {
if (bitstream_buffer_pool_.empty()) {
DVLOGF(4) << "No free bitstream buffer, skip.";
output_buffer_queue_.push_front(std::move(output_buf));
break;
}
auto buffer_ref = std::move(bitstream_buffer_pool_.back());
auto buffer_id = buffer_ref->id;
bitstream_buffer_pool_.pop_back();
const uint8_t* output_buffer =
static_cast<const uint8_t*>(output_buf->GetPlaneMapping(0)) +
output_buf->GetPlaneDataOffset(0);
size_t output_data_size = CopyIntoOutputBuffer(
output_buffer, bitstream_size, std::move(buffer_ref));
DVLOGF(4) << "returning buffer_id=" << buffer_id
<< ", size=" << output_data_size
<< ", key_frame=" << output_buf->IsKeyframe();
const int64_t timestamp_us = output_buf->GetTimeStamp().tv_usec +
output_buf->GetTimeStamp().tv_sec *
base::Time::kMicrosecondsPerSecond;
TRACE_EVENT2("media,gpu", "V4L2VEA::BitstreamBufferReady", "timestamp",
timestamp_us, "bitstream_buffer_id", buffer_id);
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::BitstreamBufferReady, client_, buffer_id,
GetMetadata(output_buffer, output_data_size,
output_buf->IsKeyframe(),
base::Microseconds(timestamp_us))));
}
if ((encoder_state_ == kFlushing) && output_buf->IsLast()) {
// Notify client that flush has finished successfully. The flush callback
// should be called after notifying the last buffer is ready.
DVLOGF(3) << "Flush completed. Start the encoder again.";
encoder_state_ = kEncoding;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), true));
// Start the encoder again.
struct v4l2_encoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_ENC_CMD_START;
if (device_->Ioctl(VIDIOC_ENCODER_CMD, &cmd) != 0) {
SetErrorState(
{EncoderStatus::Codes::kEncoderFailedFlush,
base::StrCat({"ioctl() failed: VIDIOC_ENCODER_CMD, errno=",
base::NumberToString(errno)})});
return;
}
}
}
// We may free some V4L2 output buffers above. Enqueue them if needed.
if (output_queue_->FreeBuffersCount() > 0) {
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::Enqueue, weak_this_));
}
}
bool V4L2VideoEncodeAccelerator::EnqueueInputRecord(
V4L2WritableBufferRef input_buf) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!encoder_input_queue_.empty());
TRACE_EVENT0("media,gpu", "V4L2VEA::EnqueueInputRecord");
// Enqueue an input (VIDEO_OUTPUT) buffer.
InputFrameInfo frame_info = encoder_input_queue_.front();
if (frame_info.force_keyframe) {
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME)})) {
SetErrorState({EncoderStatus::Codes::kEncoderFailedEncode,
"Failed requesting keyframe"});
return false;
}
}
scoped_refptr<VideoFrame> frame = frame_info.frame;
size_t buffer_id = input_buf.BufferId();
struct timeval timestamp;
timestamp.tv_sec = static_cast<time_t>(frame->timestamp().InSeconds());
timestamp.tv_usec =
frame->timestamp().InMicroseconds() -
frame->timestamp().InSeconds() * base::Time::kMicrosecondsPerSecond;
input_buf.SetTimeStamp(timestamp);
DCHECK_EQ(device_input_layout_->format(), frame->format());
size_t num_planes = GetNumPlanesOfV4L2PixFmt(
Fourcc::FromVideoPixelFormat(device_input_layout_->format(),
!device_input_layout_->is_multi_planar())
->ToV4L2PixFmt());
// Create GpuMemoryBufferHandle for native_input_mode.
gfx::GpuMemoryBufferHandle gmb_handle;
if (input_buf.Memory() == V4L2_MEMORY_DMABUF) {
gmb_handle = CreateGpuMemoryBufferHandle(frame.get());
if (gmb_handle.is_null() || gmb_handle.type != gfx::NATIVE_PIXMAP) {
SetErrorState({EncoderStatus::Codes::kSystemAPICallError,
"Failed to create native GpuMemoryBufferHandle"});
return false;
}
}
for (size_t i = 0; i < num_planes; ++i) {
// Single-buffer input format may have multiple color planes, so bytesused
// of the single buffer should be sum of each color planes' size.
size_t bytesused = 0;
if (num_planes == 1) {
bytesused = VideoFrame::AllocationSize(
frame->format(), device_input_layout_->coded_size());
} else {
bytesused = base::checked_cast<size_t>(
VideoFrame::PlaneSize(frame->format(), i,
device_input_layout_->coded_size())
.GetArea());
}
switch (input_buf.Memory()) {
case V4L2_MEMORY_USERPTR:
// Use buffer_size VideoEncodeAccelerator HW requested by S_FMT.
input_buf.SetPlaneSize(i, device_input_layout_->planes()[i].size);
break;
case V4L2_MEMORY_DMABUF: {
const std::vector<gfx::NativePixmapPlane>& planes =
gmb_handle.native_pixmap_handle.planes;
// TODO(crbug.com/901264): The way to pass an offset within a DMA-buf is
// not defined in V4L2 specification, so we abuse data_offset for now.
// Fix it when we have the right interface, including any necessary
// validation and potential alignment
input_buf.SetPlaneDataOffset(i, planes[i].offset);
bytesused += planes[i].offset;
// Workaround: filling length should not be needed. This is a bug of
// videobuf2 library.
input_buf.SetPlaneSize(
i, device_input_layout_->planes()[i].size + planes[i].offset);
break;
}
default:
NOTREACHED();
}
input_buf.SetPlaneBytesUsed(i, bytesused);
}
TRACE_EVENT_NESTABLE_ASYNC_BEGIN1("media,gpu", "PlatformEncoding.Encode",
frame->timestamp().InMicroseconds(),
"timestamp",
frame->timestamp().InMicroseconds());
switch (input_buf.Memory()) {
case V4L2_MEMORY_USERPTR: {
if (frame->storage_type() != VideoFrame::STORAGE_SHMEM) {
SetErrorState({EncoderStatus::Codes::kInvalidInputFrame,
"VideoFrame doesn't have shared memory"});
return false;
}
// The frame data is readable only and the driver doesn't actually write
// the buffer. But USRPTR buffer needs void*. So const_cast<> is required.
std::vector<void*> user_ptrs(num_planes);
for (size_t i = 0; i < num_planes; ++i) {
user_ptrs[i] = const_cast<uint8_t*>(frame->data(i));
}
if (!std::move(input_buf).QueueUserPtr(std::move(user_ptrs))) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat(
{"Failed queue a USRPTR buffer to input queue, errno=",
base::NumberToString(errno)})});
return false;
}
break;
}
case V4L2_MEMORY_DMABUF: {
if (!std::move(input_buf).QueueDMABuf(
gmb_handle.native_pixmap_handle.planes)) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat(
{"Failed queue a DMABUF buffer to input queue, errno=",
base::NumberToString(errno)})});
return false;
}
// TODO(b/266443239): Remove this workaround once RK3399 boards reaches
// EOL. v4lplugin holds v4l2_buffer in QBUF without duplicating the passed
// fds and resumes the QBUF request later after VIDIOC_QBUF returns. It is
// required to keep the passed fds valid until DQBUF is complete.
if (driver_name_ == "hantro-vpu") {
frame->AddDestructionObserver(base::BindOnce(
[](gfx::GpuMemoryBufferHandle) {}, std::move(gmb_handle)));
}
break;
}
default:
NOTREACHED();
}
// Keep |frame| in |input_record| so that a client doesn't use |frame| until
// a driver finishes using it, that is, VIDIOC_DQBUF is called.
InputRecord& input_record = input_buffer_map_[buffer_id];
input_record.frame = frame;
input_record.ip_output_buffer_index = frame_info.ip_output_buffer_index;
encoder_input_queue_.pop();
return true;
}
bool V4L2VideoEncodeAccelerator::EnqueueOutputRecord(
V4L2WritableBufferRef output_buf) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
TRACE_EVENT0("media,gpu", "V4L2VEA::EnqueueOutputRecord");
// Enqueue an output (VIDEO_CAPTURE) buffer.
if (!std::move(output_buf).QueueMMap()) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"Failed to QueueMMap, errno=",
base::NumberToString(errno)})});
return false;
}
return true;
}
bool V4L2VideoEncodeAccelerator::StartDevicePoll() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!device_poll_thread_.IsRunning());
// Start up the device poll thread and schedule its first DevicePollTask().
if (!device_poll_thread_.Start()) {
SetErrorState({EncoderStatus::Codes::kSystemAPICallError,
"StartDevicePoll(): Device thread failed to start"});
return false;
}
// Enqueue a poll task with no devices to poll on -- it will wait only on the
// interrupt fd.
// base::Unretained(this) is safe, because device_poll_thread_ is owned by
// *this and stops before *this destruction.
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::DevicePollTask,
base::Unretained(this), false));
return true;
}
bool V4L2VideoEncodeAccelerator::StopDevicePoll() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (device_->IsValid()) {
// Signal the DevicePollTask() to stop, and stop the device poll thread.
if (!device_->SetDevicePollInterrupt()) {
return false;
}
device_poll_thread_.Stop();
// Clear the interrupt now, to be sure.
if (!device_->ClearDevicePollInterrupt()) {
return false;
}
}
// Tegra driver cannot call Streamoff() when the stream is off, so we check
// IsStreaming() first.
if (input_queue_ && input_queue_->IsStreaming() && !input_queue_->Streamoff())
return false;
if (output_queue_ && output_queue_->IsStreaming() &&
!output_queue_->Streamoff())
return false;
// Reset all our accounting info.
while (!encoder_input_queue_.empty())
encoder_input_queue_.pop();
for (auto& [frame, ip_output_buffer_index] : input_buffer_map_) {
frame = nullptr;
}
bitstream_buffer_pool_.clear();
DVLOGF(3) << "device poll stopped";
return true;
}
void V4L2VideoEncodeAccelerator::DevicePollTask(bool poll_device) {
DVLOGF(4);
DCHECK(device_poll_thread_.task_runner()->BelongsToCurrentThread());
bool event_pending;
if (!device_->Poll(poll_device, &event_pending)) {
SetErrorState({EncoderStatus::Codes::kSystemAPICallError,
"Failed to start device polloing"});
return;
}
// All processing should happen on ServiceDeviceTask(), since we shouldn't
// touch encoder state from this thread.
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::ServiceDeviceTask,
weak_this_));
}
void V4L2VideoEncodeAccelerator::SetErrorState(EncoderStatus status) {
// We can touch encoder_state_ only if this is the encoder thread or the
// encoder thread isn't running.
if (!encoder_task_runner_->RunsTasksInCurrentSequence()) {
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::SetErrorState,
weak_this_, status));
return;
}
CHECK(!status.is_ok());
LOG(ERROR) << "SetErrorState: code=" << static_cast<int>(status.code())
<< ", message=" << status.message();
// Post NotifyErrorStatus() only if we are already initialized, as the API
// does not allow doing so before that.
if (encoder_state_ != kError && encoder_state_ != kUninitialized) {
LOG(ERROR) << "Call NotifyErrorStatus(): code="
<< static_cast<int>(status.code())
<< ", message=" << status.message();
CHECK(child_task_runner_);
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::NotifyErrorStatus, client_, std::move(status)));
}
encoder_state_ = kError;
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChangeTask(
const VideoBitrateAllocation& bitrate_allocation,
uint32_t framerate,
const std::optional<gfx::Size>& size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (size.has_value()) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
"Update output frame size is not supported"});
return;
}
if (current_bitrate_allocation_ == bitrate_allocation &&
current_framerate_ == framerate) {
return;
}
DVLOGF(2) << "bitrate=" << bitrate_allocation.ToString()
<< ", framerate=" << framerate;
if (bitrate_allocation.GetMode() != current_bitrate_allocation_.GetMode()) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
"Bitrate mode changed during encoding"});
return;
}
TRACE_EVENT2("media,gpu", "V4L2VEA::RequestEncodingParametersChangeTask",
"bitrate", current_bitrate_allocation_.ToString(), "framerate",
framerate);
if (current_bitrate_allocation_ != bitrate_allocation) {
switch (bitrate_allocation.GetMode()) {
case Bitrate::Mode::kVariable:
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_BITRATE_PEAK,
bitrate_allocation.GetPeakBps())});
// Both the average and peak bitrate are to be set in VBR.
// Only the average bitrate are to be set in CBR.
[[fallthrough]];
case Bitrate::Mode::kConstant:
if (h264_l1t2_enabled_) {
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L0_BR,
bitrate_allocation.GetBitrateBps(0u, 0u)),
V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L1_BR,
bitrate_allocation.GetBitrateBps(0u, 1u))})) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to change average bitrate"});
return;
}
} else if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(
V4L2_CID_MPEG_VIDEO_BITRATE,
bitrate_allocation.GetBitrateBps(0u, 0u))})) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to change average bitrate"});
return;
}
break;
case Bitrate::Mode::kExternal:
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
"Unsupported rate control mode."});
return;
}
}
if (current_framerate_ != framerate) {
struct v4l2_streamparm parms;
memset(&parms, 0, sizeof(parms));
parms.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
// Note that we are provided "frames per second" but V4L2 expects "time per
// frame"; hence we provide the reciprocal of the framerate here.
parms.parm.output.timeperframe.numerator = 1;
parms.parm.output.timeperframe.denominator = framerate;
if (device_->Ioctl(VIDIOC_S_PARM, &parms) != 0) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"ioctl() failed: VIDIOC_S_PARM, errno=",
base::NumberToString(errno)})});
return;
}
}
current_bitrate_allocation_ = bitrate_allocation;
current_framerate_ = framerate;
}
bool V4L2VideoEncodeAccelerator::SetOutputFormat(
VideoCodecProfile output_profile) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!input_queue_->IsStreaming());
DCHECK(!output_queue_->IsStreaming());
DCHECK(!encoder_input_visible_rect_.IsEmpty());
output_buffer_byte_size_ =
GetEncodeBitstreamBufferSize(encoder_input_visible_rect_.size());
// Sets 0 to width and height in CAPTURE queue, which should be ignored by the
// driver.
std::optional<struct v4l2_format> format = output_queue_->SetFormat(
output_format_fourcc_, gfx::Size(), output_buffer_byte_size_);
if (!format) {
return false;
}
// Device might have adjusted the required output size.
size_t adjusted_output_buffer_size =
base::checked_cast<size_t>(format->fmt.pix_mp.plane_fmt[0].sizeimage);
output_buffer_byte_size_ = adjusted_output_buffer_size;
return true;
}
std::optional<struct v4l2_format>
V4L2VideoEncodeAccelerator::NegotiateInputFormat(VideoPixelFormat input_format,
const gfx::Size& size) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!input_queue_->IsStreaming());
DCHECK(!output_queue_->IsStreaming());
// First see if the device can use the provided format directly.
std::vector<uint32_t> pix_fmt_candidates;
auto input_fourcc = Fourcc::FromVideoPixelFormat(input_format, false);
if (!input_fourcc) {
LOG(ERROR) << "Invalid input format "
<< VideoPixelFormatToString(input_format);
return std::nullopt;
}
pix_fmt_candidates.push_back(input_fourcc->ToV4L2PixFmt());
// Second try preferred input formats for both single-planar and
// multi-planar.
for (auto preferred_format :
device_->PreferredInputFormat(V4L2Device::Type::kEncoder)) {
pix_fmt_candidates.push_back(preferred_format);
}
for (const auto pix_fmt : pix_fmt_candidates) {
DVLOGF(3) << "Trying S_FMT with " << FourccToString(pix_fmt);
std::optional<struct v4l2_format> format =
input_queue_->SetFormat(pix_fmt, size, 0);
if (!format)
continue;
DVLOGF(3) << "Success: S_FMT with " << FourccToString(pix_fmt);
device_input_layout_ = V4L2FormatToVideoFrameLayout(*format);
if (!device_input_layout_) {
LOG(ERROR) << "Invalid device_input_layout_";
return std::nullopt;
}
DVLOG(3) << "Negotiated device_input_layout_: " << *device_input_layout_;
if (!gfx::Rect(device_input_layout_->coded_size())
.Contains(gfx::Rect(size))) {
LOG(ERROR) << "Input size " << size.ToString()
<< " exceeds encoder capability. Size encoder can handle: "
<< device_input_layout_->coded_size().ToString();
return std::nullopt;
}
// Make sure that the crop is preserved as we have changed the input
// resolution.
if (!ApplyCrop()) {
return std::nullopt;
}
return format;
}
return std::nullopt;
}
bool V4L2VideoEncodeAccelerator::ApplyCrop() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
struct v4l2_rect visible_rect;
visible_rect.left = encoder_input_visible_rect_.x();
visible_rect.top = encoder_input_visible_rect_.y();
visible_rect.width = encoder_input_visible_rect_.width();
visible_rect.height = encoder_input_visible_rect_.height();
struct v4l2_selection selection_arg;
memset(&selection_arg, 0, sizeof(selection_arg));
selection_arg.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
selection_arg.target = V4L2_SEL_TGT_CROP;
selection_arg.r = visible_rect;
// The width and height might be adjusted by driver.
// Need to read it back and set to |encoder_input_visible_rect_|.
if (device_->Ioctl(VIDIOC_S_SELECTION, &selection_arg) == 0) {
DVLOGF(3) << "VIDIOC_S_SELECTION is supported";
visible_rect = selection_arg.r;
} else {
DVLOGF(3) << "Fallback to VIDIOC_S/G_CROP";
struct v4l2_crop crop;
memset(&crop, 0, sizeof(crop));
crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
crop.c = visible_rect;
if (device_->Ioctl(VIDIOC_S_CROP, &crop) != 0) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"ioctl() failed: VIDIOC_S_CROP, errno=",
base::NumberToString(errno)})});
return false;
}
if (device_->Ioctl(VIDIOC_G_CROP, &crop) != 0) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"ioctl() failed: VIDIOC_G_CROP",
base::NumberToString(errno)})});
return false;
}
visible_rect = crop.c;
}
const gfx::Rect adjusted_visible_rect(visible_rect.left, visible_rect.top,
visible_rect.width,
visible_rect.height);
if (encoder_input_visible_rect_ != adjusted_visible_rect) {
LOG(ERROR) << "Unsupported visible rectangle: "
<< encoder_input_visible_rect_.ToString()
<< ", the rectangle adjusted by the driver: "
<< adjusted_visible_rect.ToString();
return false;
}
return true;
}
bool V4L2VideoEncodeAccelerator::SetFormats(VideoPixelFormat input_format,
VideoCodecProfile output_profile) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!input_queue_->IsStreaming());
DCHECK(!output_queue_->IsStreaming());
if (!SetOutputFormat(output_profile)) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedProfile,
base::StrCat({"Unsupported codec profile: ",
GetProfileName(output_profile)})});
return false;
}
gfx::Size input_size = encoder_input_visible_rect_.size();
if (native_input_mode_) {
auto input_layout = GetPlatformVideoFrameLayout(
input_format, encoder_input_visible_rect_.size(),
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE);
if (!input_layout)
return false;
input_size = gfx::Size(static_cast<int>(input_layout->planes()[0].stride),
input_layout->coded_size().height());
}
DCHECK(input_frame_size_.IsEmpty());
auto v4l2_format = NegotiateInputFormat(input_format, input_size);
if (!v4l2_format) {
SetErrorState({EncoderStatus::Codes::kUnsupportedFrameFormat,
base::StrCat({"Unsupported input format: ",
VideoPixelFormatToString(input_format)})});
return false;
}
if (native_input_mode_) {
input_frame_size_ = VideoFrame::DetermineAlignedSize(
input_format, encoder_input_visible_rect_.size());
} else {
input_frame_size_ = V4L2Device::AllocatedSizeFromV4L2Format(*v4l2_format);
}
return true;
}
bool V4L2VideoEncodeAccelerator::InitControls(const Config& config) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
// Don't expect other output formats.
CHECK(output_format_fourcc_ == V4L2_PIX_FMT_H264 ||
output_format_fourcc_ == V4L2_PIX_FMT_VP8);
// Enable frame-level bitrate control. This is the only mandatory control.
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_FRAME_RC_ENABLE, 1)})) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed enabling bitrate control"});
return false;
}
switch (output_format_fourcc_) {
case V4L2_PIX_FMT_H264:
if (!InitControlsH264(config)) {
return false;
}
break;
case V4L2_PIX_FMT_VP8:
InitControlsVP8(config);
break;
default:
NOTREACHED() << "Unsupported codec "
<< FourccToString(output_format_fourcc_);
}
// Optional controls:
// - Enable macroblock-level bitrate control.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE, 1)});
// - Set GOP length, or default 0 to disable periodic key frames.
device_->SetGOPLength(config.gop_length.value_or(0));
return true;
}
bool V4L2VideoEncodeAccelerator::InitControlsH264(const Config& config) {
#ifndef V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR
#define V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR (V4L2_CID_MPEG_BASE + 644)
#endif
// Request to inject SPS and PPS before each IDR, if the device supports
// that feature. Otherwise we'll have to cache and inject ourselves.
if (device_->IsCtrlExposed(V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR)) {
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR, 1)})) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to set V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR to 1"});
return false;
}
inject_sps_and_pps_ = false;
DVLOGF(2) << "Device supports injecting SPS+PPS before each IDR";
} else {
inject_sps_and_pps_ = true;
DVLOGF(2) << "Will inject SPS+PPS before each IDR, unsupported by device";
}
// No B-frames, for lowest decoding latency.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_B_FRAMES, 0)});
// Set H.264 profile.
int32_t profile_value =
V4L2Device::VideoCodecProfileToV4L2H264Profile(config.output_profile);
if (profile_value < 0) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedProfile,
base::StrCat({"Unexpected h264 profile: ",
GetProfileName(config.output_profile)})});
return false;
}
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_PROFILE, profile_value)})) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedProfile,
base::StrCat({"Unsupported h264 profile: ",
GetProfileName(config.output_profile)})});
return false;
}
// Set H.264 output level from config. Use Level 4.0 as fallback default.
uint8_t h264_level = config.h264_output_level.value_or(H264SPS::kLevelIDC4p0);
constexpr int kH264MacroblockSizeInPixels = 16;
const uint32_t framerate = config.framerate;
const uint32_t mb_width =
base::bits::AlignUpDeprecatedDoNotUse(config.input_visible_size.width(),
kH264MacroblockSizeInPixels) /
kH264MacroblockSizeInPixels;
const uint32_t mb_height =
base::bits::AlignUpDeprecatedDoNotUse(config.input_visible_size.height(),
kH264MacroblockSizeInPixels) /
kH264MacroblockSizeInPixels;
const uint32_t framesize_in_mbs = mb_width * mb_height;
// Check whether the h264 level is valid.
if (!CheckH264LevelLimits(config.output_profile, h264_level,
config.bitrate.target_bps(), framerate,
framesize_in_mbs)) {
std::optional<uint8_t> valid_level =
FindValidH264Level(config.output_profile, config.bitrate.target_bps(),
framerate, framesize_in_mbs);
if (!valid_level) {
SetErrorState(
{EncoderStatus::Codes::kEncoderInitializationError,
base::StrCat({"Could not find a valid h264 level for"
" profile=",
GetProfileName(config.output_profile), " bitrate=",
base::NumberToString(config.bitrate.target_bps()),
" framerate=", base::NumberToString(framerate),
" size=", config.input_visible_size.ToString()})});
return false;
}
h264_level = *valid_level;
}
int32_t level_value = V4L2Device::H264LevelIdcToV4L2H264Level(h264_level);
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_LEVEL, level_value)});
// Ask not to put SPS and PPS into separate bitstream buffers.
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_HEADER_MODE,
V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME)});
// H264 coding tools parameter. Since a driver may not support some of them,
// EXT_S_CTRLS is called to each of them to enable as many coding tools as
// possible.
// Don't produce Intra-only frame.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_I_PERIOD, 0)});
// Enable deblocking filter.
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE,
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED)});
// Use CABAC in Main and High profiles.
if (config.output_profile == H264PROFILE_MAIN ||
config.output_profile == H264PROFILE_HIGH) {
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_ENTROPY_MODE,
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC)});
}
// Use 8x8 transform in High profile.
if (config.output_profile == H264PROFILE_HIGH) {
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_8X8_TRANSFORM, true)});
}
// Quantization parameter. The h264 qp range is 0-51.
// Note: Webrtc default values are 24 and 37 respectively, see
// h264_encoder_impl.cc.
// These values were previously copied from the VA-API encoder.
// The MAX_QP parameter needed modification to 51 due to
// b/274867782 and b/241549978.
// Ignore return values as these controls are optional.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_MAX_QP, 51)});
// Don't set MIN_QP with other controls since it is not supported by
// some devices and may prevent other controls from being set.
// The MIN_QP needed modification due to b/280853786
// The value 18 was tuned experimentally to let the test pass but
// to be close to the original one
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_MIN_QP, 18)});
if (h264_l1t2_enabled_) {
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING, 1),
V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_TYPE,
V4L2_MPEG_VIDEO_H264_HIERARCHICAL_CODING_P),
V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER,
2u)})) {
SetErrorState(
{EncoderStatus::Codes::kEncoderInitializationError,
base::StrCat(
{"h264 hierachical coding was requested, but configuration of "
"the V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING* controls "
"failed."})});
return false;
}
}
return true;
}
void V4L2VideoEncodeAccelerator::InitControlsVP8(const Config& config) {
// Quantization parameter. They are vp8 ac/dc indices and their ranges are
// 0-127. These values were copied from the VA-API encoder.
// Ignore return values as these controls are optional.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_VPX_MIN_QP, 4),
V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_VPX_MAX_QP, 117)});
}
bool V4L2VideoEncodeAccelerator::CreateInputBuffers() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!input_queue_->IsStreaming());
// If using DMABUF input, we want to reuse the same V4L2 buffer index
// for the same input buffer as much as possible. But we don't know in advance
// how many different input buffers we will get. Therefore we allocate as
// many V4L2 buffers as possible (VIDEO_MAX_FRAME == 32). Unused indexes
// won't have a tangible cost since they don't have backing memory.
size_t num_buffers;
switch (input_memory_type_) {
case V4L2_MEMORY_DMABUF:
num_buffers = VIDEO_MAX_FRAME;
break;
default:
num_buffers = kInputBufferCount;
break;
}
if (input_queue_->AllocateBuffers(num_buffers, input_memory_type_,
/*incoherent=*/false) < kInputBufferCount) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to allocate V4L2 input buffers."});
return false;
}
DCHECK(input_buffer_map_.empty());
input_buffer_map_.resize(input_queue_->AllocatedBuffersCount());
return true;
}
bool V4L2VideoEncodeAccelerator::CreateOutputBuffers() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!output_queue_->IsStreaming());
if (output_queue_->AllocateBuffers(kOutputBufferCount, V4L2_MEMORY_MMAP,
/*incoherent=*/false) <
kOutputBufferCount) {
SetErrorState(
{EncoderStatus::Codes::kEncoderInitializationError,
base::StrCat({"Failed to allocate V4L2 output buffers, errno=",
base::NumberToString(errno)})});
return false;
}
return true;
}
void V4L2VideoEncodeAccelerator::DestroyInputBuffers() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (!input_queue_ || input_queue_->AllocatedBuffersCount() == 0)
return;
DCHECK(!input_queue_->IsStreaming());
if (!input_queue_->DeallocateBuffers())
VLOGF(1) << "Failed to deallocate V4L2 input buffers";
input_buffer_map_.clear();
}
void V4L2VideoEncodeAccelerator::DestroyOutputBuffers() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (!output_queue_ || output_queue_->AllocatedBuffersCount() == 0)
return;
DCHECK(!output_queue_->IsStreaming());
if (!output_queue_->DeallocateBuffers())
VLOGF(1) << "Failed to deallocate V4L2 output buffers";
}
} // namespace media