1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
media / gpu / vaapi / test_utils.cc [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/vaapi/test_utils.h"
#include <memory>
#include <sys/mman.h>
#include "base/bits.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "media/base/video_types.h"
#include "media/gpu/vaapi/vaapi_utils.h"
#include "third_party/libdrm/src/include/drm/drm_fourcc.h"
#include "third_party/libyuv/include/libyuv.h"
#include "ui/gfx/buffer_format_util.h"
#include "ui/gfx/gpu_memory_buffer.h"
#if BUILDFLAG(IS_CHROMEOS_ASH)
#include "media/gpu/test/local_gpu_memory_buffer_manager.h"
#endif
namespace media {
namespace vaapi_test_utils {
#if BUILDFLAG(IS_CHROMEOS_ASH)
namespace {
// Credit to the Mesa project for writing extensive documentation on the Tile4
// format. https://docs.mesa3d.org/isl/tiling.html#tile4
//
// Tile4 has 2 levels of tiling. The "main" tiles are 8x8 squares of subtiles.
// Subtiles are 16x4 rectangles of pixels. Pixels within subtiles are laid out
// in raster order. Subtiles within tiles are laid out in a repeating "Z"
// pattern. The "Z"s are 4 subtiles wide and 2 subtiles tall. Main tiles within
// a plane are laid out in raster order.
//
// Subtiles are conveniently the size of one cache line, and tiles are
// conveniently the size of one (4K) page.
//
// This detiling algorithm prioritizes linear writes at the expense of very
// non-linear reads so that we take advantage of the write combiner. One low
// hanging fruit optimization might be to experiment with prefetching to help
// with the unusual memory read pattern.
constexpr int kTile4TileWidth = 8;
constexpr int kTile4TileHeight = 8;
constexpr int kTile4SubtileWidth = 16;
constexpr int kTile4SubtileHeight = 4;
constexpr int kTile4SubtileSizeBytes = kTile4SubtileWidth * kTile4SubtileHeight;
constexpr int kTile4TileWidthBytes = kTile4TileWidth * kTile4SubtileWidth;
constexpr int kTile4TileHeightBytes = kTile4TileHeight * kTile4SubtileHeight;
void Detile4(uint8_t* linear_dest,
const uint8_t* tiled_src,
int width,
int height) {
constexpr int kTile4TileSizeBytes =
kTile4TileWidthBytes * kTile4TileHeightBytes;
constexpr int kTile4ZWidth = 4;
width = base::bits::AlignDownDeprecatedDoNotUse(width, kTile4TileWidthBytes);
height =
base::bits::AlignDownDeprecatedDoNotUse(height, kTile4TileHeightBytes);
for (int y = 0; y < height; y += kTile4TileHeight * kTile4SubtileHeight) {
for (int tile_y = 0; tile_y < kTile4TileHeight; tile_y++) {
for (int subtile_y = 0; subtile_y < kTile4SubtileHeight; subtile_y++) {
const uint8_t* row_ptr = tiled_src;
for (int x = 0; x < width; x += kTile4TileWidth * kTile4SubtileWidth) {
int tile_x = 0;
// Copy 1 row from 4 subtiles.
for (; tile_x < kTile4ZWidth; tile_x++) {
memcpy(linear_dest, row_ptr, kTile4SubtileWidth);
linear_dest += kTile4SubtileWidth;
row_ptr += kTile4SubtileSizeBytes;
}
row_ptr += kTile4ZWidth * kTile4SubtileSizeBytes;
// Copy 1 row from another 4 subtiles.
for (; tile_x < kTile4TileWidth; tile_x++) {
memcpy(linear_dest, row_ptr, kTile4SubtileWidth);
linear_dest += kTile4SubtileWidth;
row_ptr += kTile4SubtileSizeBytes;
}
// Advance to the tile to the right.
row_ptr +=
kTile4TileSizeBytes - (3 * kTile4ZWidth * kTile4SubtileSizeBytes);
}
// Advance to the next row in the subtile.
tiled_src += kTile4SubtileWidth;
}
// Advance to the next row in the tile.
if (tile_y % 2 == 0) {
tiled_src +=
kTile4ZWidth * kTile4SubtileSizeBytes - kTile4SubtileSizeBytes;
} else {
tiled_src +=
3 * kTile4ZWidth * kTile4SubtileSizeBytes - kTile4SubtileSizeBytes;
}
}
// Advance to the tile below.
tiled_src +=
width * kTile4TileHeight * kTile4SubtileHeight - kTile4TileSizeBytes;
}
}
} // namespace
#endif
DecodedImage::~DecodedImage() = default;
std::string TestParamToString(
const testing::TestParamInfo<TestParam>& param_info) {
return param_info.param.test_name;
}
#if BUILDFLAG(IS_CHROMEOS_ASH)
DecodedImage ScopedVAImageToDecodedImage(const ScopedVAImage* scoped_va_image) {
DecodedImage decoded_image{};
decoded_image.fourcc = scoped_va_image->image()->format.fourcc;
decoded_image.number_of_planes = scoped_va_image->image()->num_planes;
decoded_image.size =
gfx::Size(base::strict_cast<int>(scoped_va_image->image()->width),
base::strict_cast<int>(scoped_va_image->image()->height));
DCHECK_LE(base::strict_cast<size_t>(decoded_image.number_of_planes),
kMaxNumberPlanes);
// This is safe because |number_of_planes| is retrieved from the VA-API and it
// can not be greater than 3, which is also the size of the |planes| array.
for (uint32_t i = 0u; i < decoded_image.number_of_planes; ++i) {
decoded_image.planes[i].data =
static_cast<uint8_t*>(scoped_va_image->va_buffer()->data()) +
scoped_va_image->image()->offsets[i];
decoded_image.planes[i].stride =
base::checked_cast<int>(scoped_va_image->image()->pitches[i]);
}
return decoded_image;
}
class NativePixmapMapping {
public:
virtual ~NativePixmapMapping() = default;
virtual raw_ptr<uint8_t> GetData(size_t plane_idx) const = 0;
virtual int GetStride(size_t plane_idx) const = 0;
virtual gfx::Size GetSize() const = 0;
};
class GpuMemoryBufferMapping : public NativePixmapMapping {
public:
static std::unique_ptr<GpuMemoryBufferMapping> CreateGpuMemoryBufferMapping(
gfx::NativePixmapHandle& handle,
const gfx::Size& size,
const gfx::BufferFormat& format) {
std::unique_ptr<LocalGpuMemoryBufferManager> gpu_memory_buffer_manager =
std::make_unique<LocalGpuMemoryBufferManager>();
std::unique_ptr<gfx::GpuMemoryBuffer> gpu_memory_buffer =
gpu_memory_buffer_manager->ImportDmaBuf(handle, size, format);
if (!gpu_memory_buffer->Map()) {
LOG(ERROR) << "Failed to map GPU memory buffer!";
return nullptr;
}
return std::make_unique<GpuMemoryBufferMapping>(
std::move(gpu_memory_buffer_manager), std::move(gpu_memory_buffer));
}
GpuMemoryBufferMapping(
std::unique_ptr<LocalGpuMemoryBufferManager> gpu_memory_buffer_manager,
std::unique_ptr<gfx::GpuMemoryBuffer> gpu_memory_buffer)
: gpu_memory_buffer_manager_(std::move(gpu_memory_buffer_manager)),
gpu_memory_buffer_(std::move(gpu_memory_buffer)) {}
~GpuMemoryBufferMapping() override { gpu_memory_buffer_->Unmap(); }
raw_ptr<uint8_t> GetData(size_t plane_idx) const override {
return static_cast<uint8_t*>(gpu_memory_buffer_->memory(plane_idx));
}
int GetStride(size_t plane_idx) const override {
return gpu_memory_buffer_->stride(plane_idx);
}
gfx::Size GetSize() const override { return gpu_memory_buffer_->GetSize(); }
private:
// It's very important these two objects are initialized in this order,
// because C++ guarantees they will be destroyed in the reverse order.
// Unfortunately, the destructor for GpuMemoryBuffer calls the GBM device that
// gets destroyed by the LocalGpuMemoryBufferManager destructor, so there is
// an order we need to do this in to prevent a segfault.
const std::unique_ptr<LocalGpuMemoryBufferManager> gpu_memory_buffer_manager_;
const std::unique_ptr<gfx::GpuMemoryBuffer> gpu_memory_buffer_;
};
class Tile4Mapping : public NativePixmapMapping {
public:
static std::unique_ptr<Tile4Mapping> CreateTile4Mapping(
gfx::NativePixmapHandle& handle,
const gfx::Size& size,
const gfx::BufferFormat& format) {
size_t plane_strides[2];
size_t plane_sizes[2];
uint8_t* plane_addrs[2];
int aligned_width = base::bits::AlignUp(
handle.planes[0].stride, static_cast<uint32_t>(kTile4TileWidthBytes));
int aligned_height = base::bits::AlignUpDeprecatedDoNotUse(
size.height(), kTile4TileHeightBytes);
plane_strides[0] = aligned_width;
plane_sizes[0] = aligned_height * aligned_width;
aligned_width = base::bits::AlignUp(
handle.planes[1].stride, static_cast<uint32_t>(kTile4TileWidthBytes));
aligned_height = base::bits::AlignUpDeprecatedDoNotUse(
size.height() / 2, kTile4TileHeightBytes);
plane_strides[1] = aligned_width;
plane_sizes[1] = aligned_height * aligned_width;
// minigbm doesn't support Tile4 mappings, so we tell it to perform the
// mapping as if the buffer were linear to work around this limitation.
CHECK_EQ(handle.modifier, I915_FORMAT_MOD_4_TILED);
handle.modifier = gfx::NativePixmapHandle::kNoModifier;
LocalGpuMemoryBufferManager gpu_memory_buffer_manager;
std::unique_ptr<gfx::GpuMemoryBuffer> gpu_memory_buffer =
gpu_memory_buffer_manager.ImportDmaBuf(handle, size, format);
if (!gpu_memory_buffer->Map()) {
LOG(ERROR) << "Failed to map GPU memory buffer!";
return nullptr;
}
CHECK_EQ(handle.planes.size(), 2u);
for (size_t plane_idx = 0; plane_idx < handle.planes.size(); plane_idx++) {
int width = plane_strides[plane_idx];
int height = plane_sizes[plane_idx] / width;
const uint8_t* src =
static_cast<uint8_t*>(gpu_memory_buffer->memory(plane_idx));
uint8_t* dest = static_cast<uint8_t*>(
mmap(nullptr, plane_sizes[plane_idx], PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
if (dest == MAP_FAILED) {
PLOG(ERROR) << "Failed to create detiled mapping!";
return nullptr;
}
Detile4(dest, src, width, height);
plane_addrs[plane_idx] = dest;
// We don't want to give the user the impression that this mapping is
// bidirectional. We are performing a one-off detile operation to allow
// this Tile4 buffer to be read, but we have no way of propagating writes
// from our temporary linear buffer to the underlying Tile4 buffer. So, we
// mark these pages as read only.
if (mprotect(dest, plane_sizes[plane_idx], PROT_READ)) {
PLOG(ERROR) << "Failed to mark detiled mapping read only!";
return nullptr;
}
}
gpu_memory_buffer->Unmap();
handle.modifier = I915_FORMAT_MOD_4_TILED;
return std::make_unique<Tile4Mapping>(size, plane_strides, plane_sizes,
plane_addrs);
}
Tile4Mapping(gfx::Size size,
size_t plane_strides[2],
size_t plane_sizes[2],
uint8_t* plane_addrs[2])
: size_(size),
plane_strides_{plane_strides[0], plane_strides[1]},
plane_sizes_{plane_sizes[0], plane_sizes[1]},
plane_addrs_{plane_addrs[0], plane_addrs[1]} {}
~Tile4Mapping() override {
for (size_t plane_idx = 0; plane_idx < std::size(plane_addrs_);
plane_idx++) {
munmap(static_cast<void*>(plane_addrs_[plane_idx]),
plane_sizes_[plane_idx]);
}
}
raw_ptr<uint8_t> GetData(size_t plane_idx) const override {
if (plane_idx >= std::size(plane_addrs_)) {
return nullptr;
}
return plane_addrs_[plane_idx];
}
int GetStride(size_t plane_idx) const override {
if (plane_idx >= std::size(plane_strides_)) {
return -1;
}
return plane_strides_[plane_idx];
}
gfx::Size GetSize() const override { return size_; }
private:
const gfx::Size size_;
const size_t plane_strides_[2];
const size_t plane_sizes_[2];
uint8_t* const plane_addrs_[2];
};
std::unique_ptr<NativePixmapMapping> CreateNativePixmapMapping(
gfx::NativePixmapHandle& handle,
const gfx::Size& size,
const gfx::BufferFormat& format) {
if (handle.modifier == I915_FORMAT_MOD_4_TILED) {
return Tile4Mapping::CreateTile4Mapping(handle, size, format);
}
return GpuMemoryBufferMapping::CreateGpuMemoryBufferMapping(handle, size,
format);
}
struct NativePixmapDecodedImage : public DecodedImage {
public:
NativePixmapDecodedImage(const uint32_t fourcc,
const uint32_t number_of_planes,
const gfx::Size& size,
std::unique_ptr<NativePixmapMapping> mapping)
: mapping_(std::move(mapping)) {
this->fourcc = fourcc;
this->number_of_planes = number_of_planes;
this->size = size;
for (size_t plane_idx = 0; plane_idx < number_of_planes; plane_idx++) {
planes[plane_idx].data = mapping_->GetData(plane_idx);
planes[plane_idx].stride = mapping_->GetStride(plane_idx);
}
}
private:
const std::unique_ptr<NativePixmapMapping> mapping_;
};
std::unique_ptr<DecodedImage> NativePixmapToDecodedImage(
gfx::NativePixmapHandle& handle,
const gfx::Size& size,
const gfx::BufferFormat& format) {
uint32_t fourcc;
uint32_t number_of_planes;
if (format == gfx::BufferFormat::YVU_420) {
fourcc = VA_FOURCC_I420;
number_of_planes = 3;
} else if (format == gfx::BufferFormat::YUV_420_BIPLANAR) {
fourcc = VA_FOURCC_NV12;
number_of_planes = 2;
} else {
LOG(ERROR) << "Unsupported format " << gfx::BufferFormatToString(format);
return nullptr;
}
std::unique_ptr<NativePixmapMapping> mapping =
CreateNativePixmapMapping(handle, size, format);
if (!mapping) {
LOG(ERROR) << "Failed to create NativePixmapMapping";
return nullptr;
}
return std::make_unique<NativePixmapDecodedImage>(fourcc, number_of_planes,
size, std::move(mapping));
}
#endif
bool CompareImages(const DecodedImage& reference_image,
const DecodedImage& hw_decoded_image,
double min_ssim) {
if (reference_image.fourcc != VA_FOURCC_I420)
return false;
// Uses the reference image's size as the ground truth.
const gfx::Size image_size = reference_image.size;
if (image_size != hw_decoded_image.size) {
LOG(ERROR) << "Wrong expected software decoded image size, "
<< image_size.ToString() << " versus VaAPI provided "
<< hw_decoded_image.size.ToString();
return false;
}
double ssim = 0;
const uint32_t hw_fourcc = hw_decoded_image.fourcc;
if (hw_fourcc == VA_FOURCC_I420) {
ssim = libyuv::I420Ssim(
reference_image.planes[0].data, reference_image.planes[0].stride,
reference_image.planes[1].data, reference_image.planes[1].stride,
reference_image.planes[2].data, reference_image.planes[2].stride,
hw_decoded_image.planes[0].data, hw_decoded_image.planes[0].stride,
hw_decoded_image.planes[1].data, hw_decoded_image.planes[1].stride,
hw_decoded_image.planes[2].data, hw_decoded_image.planes[2].stride,
image_size.width(), image_size.height());
} else if (hw_fourcc == VA_FOURCC_NV12 || hw_fourcc == VA_FOURCC_YUY2 ||
hw_fourcc == VA_FOURCC('Y', 'U', 'Y', 'V')) {
// Calculate the stride for the chroma planes.
const gfx::Size half_image_size((image_size.width() + 1) / 2,
(image_size.height() + 1) / 2);
// Temporary planes to hold intermediate conversions to I420 (i.e. NV12 to
// I420 or YUYV/2 to I420).
auto temp_y = std::make_unique<uint8_t[]>(image_size.GetArea());
auto temp_u = std::make_unique<uint8_t[]>(half_image_size.GetArea());
auto temp_v = std::make_unique<uint8_t[]>(half_image_size.GetArea());
int conversion_result = -1;
if (hw_fourcc == VA_FOURCC_NV12) {
conversion_result = libyuv::NV12ToI420(
hw_decoded_image.planes[0].data, hw_decoded_image.planes[0].stride,
hw_decoded_image.planes[1].data, hw_decoded_image.planes[1].stride,
temp_y.get(), image_size.width(), temp_u.get(),
half_image_size.width(), temp_v.get(), half_image_size.width(),
image_size.width(), image_size.height());
} else {
// |hw_fourcc| is YUY2 or YUYV, which are handled the same.
// TODO(crbug.com/40586948): support other formats/planarities/pitches.
conversion_result = libyuv::YUY2ToI420(
hw_decoded_image.planes[0].data, hw_decoded_image.planes[0].stride,
temp_y.get(), image_size.width(), temp_u.get(),
half_image_size.width(), temp_v.get(), half_image_size.width(),
image_size.width(), image_size.height());
}
if (conversion_result != 0) {
LOG(ERROR) << "libyuv conversion error";
return false;
}
ssim = libyuv::I420Ssim(
reference_image.planes[0].data, reference_image.planes[0].stride,
reference_image.planes[1].data, reference_image.planes[1].stride,
reference_image.planes[2].data, reference_image.planes[2].stride,
temp_y.get(), image_size.width(), temp_u.get(), half_image_size.width(),
temp_v.get(), half_image_size.width(), image_size.width(),
image_size.height());
} else {
LOG(ERROR) << "HW FourCC not supported: " << FourccToString(hw_fourcc);
return false;
}
if (ssim < min_ssim) {
LOG(ERROR) << "SSIM too low: " << ssim << " < " << min_ssim;
return false;
}
return true;
}
} // namespace vaapi_test_utils
} // namespace media