1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235

media / learning / common / labelled_example_unittest.cc [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/learning/common/labelled_example.h"

#include <algorithm>

#include "testing/gtest/include/gtest/gtest.h"

namespace media {
namespace learning {

class LearnerLabelledExampleTest : public testing::Test {};

TEST_F(LearnerLabelledExampleTest, InitListWorks) {
  const int kFeature1 = 123;
  const int kFeature2 = 456;
  std::vector<FeatureValue> features = {FeatureValue(kFeature1),
                                        FeatureValue(kFeature2)};
  TargetValue target(789);
  LabelledExample example({FeatureValue(kFeature1), FeatureValue(kFeature2)},
                          target);

  EXPECT_EQ(example.features, features);
  EXPECT_EQ(example.target_value, target);
}

TEST_F(LearnerLabelledExampleTest, CopyConstructionWorks) {
  LabelledExample example_1({FeatureValue(123), FeatureValue(456)},
                            TargetValue(789));
  LabelledExample example_2(example_1);

  EXPECT_EQ(example_1, example_2);
}

TEST_F(LearnerLabelledExampleTest, MoveConstructionWorks) {
  LabelledExample example_1({FeatureValue(123), FeatureValue(456)},
                            TargetValue(789));

  LabelledExample example_1_copy(example_1);
  LabelledExample example_1_move(std::move(example_1));

  EXPECT_EQ(example_1_copy, example_1_move);
  EXPECT_NE(example_1_copy, example_1);
}

TEST_F(LearnerLabelledExampleTest, EqualExamplesCompareAsEqual) {
  const int kFeature1 = 123;
  const int kFeature2 = 456;
  TargetValue target(789);
  LabelledExample example_1({FeatureValue(kFeature1), FeatureValue(kFeature2)},
                            target);
  LabelledExample example_2({FeatureValue(kFeature1), FeatureValue(kFeature2)},
                            target);
  // Verify both that == and != work.
  EXPECT_EQ(example_1, example_2);
  EXPECT_FALSE(example_1 != example_2);
  // Also insist that equal examples are not less.
  EXPECT_FALSE(example_1 < example_2);
  EXPECT_FALSE(example_2 < example_1);
}

TEST_F(LearnerLabelledExampleTest, UnequalFeaturesCompareAsUnequal) {
  const int kFeature1 = 123;
  const int kFeature2 = 456;
  TargetValue target(789);
  LabelledExample example_1({FeatureValue(kFeature1), FeatureValue(kFeature1)},
                            target);
  LabelledExample example_2({FeatureValue(kFeature2), FeatureValue(kFeature2)},
                            target);
  EXPECT_TRUE(example_1 != example_2);
  EXPECT_FALSE(example_1 == example_2);
  // We don't care which way is <, but we do care that one is less than the
  // other but not both.
  EXPECT_NE((example_1 < example_2), (example_2 < example_1));
}

TEST_F(LearnerLabelledExampleTest, WeightDoesntChangeExampleEquality) {
  const int kFeature1 = 123;
  TargetValue target(789);
  LabelledExample example_1({FeatureValue(kFeature1)}, target);
  LabelledExample example_2 = example_1;

  // Set the weights to be unequal.  This should not affect the comparison.
  example_1.weight = 10u;
  example_2.weight = 20u;

  // Verify both that == and != ignore weights.
  EXPECT_EQ(example_1, example_2);
  EXPECT_FALSE(example_1 != example_2);
  // Also insist that equal examples are not less.
  EXPECT_FALSE(example_1 < example_2);
  EXPECT_FALSE(example_2 < example_1);
}

TEST_F(LearnerLabelledExampleTest, ExampleAssignmentCopiesWeights) {
  // While comparisons ignore weights, copy / assign should not.
  const int kFeature1 = 123;
  TargetValue target(789);
  LabelledExample example_1({FeatureValue(kFeature1)}, target);
  example_1.weight = 10u;

  // Copy-assignment.
  LabelledExample example_2;
  example_2 = example_1;
  EXPECT_EQ(example_1, example_2);
  EXPECT_EQ(example_1.weight, example_2.weight);

  // Copy-construction.
  LabelledExample example_3(example_1);
  EXPECT_EQ(example_1, example_3);
  EXPECT_EQ(example_1.weight, example_3.weight);

  // Move-assignment.
  LabelledExample example_4;
  example_4 = std::move(example_2);
  EXPECT_EQ(example_1, example_4);
  EXPECT_EQ(example_1.weight, example_4.weight);

  // Move-construction.
  LabelledExample example_5(std::move(example_3));
  EXPECT_EQ(example_1, example_5);
  EXPECT_EQ(example_1.weight, example_5.weight);
}

TEST_F(LearnerLabelledExampleTest, UnequalTargetsCompareAsUnequal) {
  const int kFeature1 = 123;
  const int kFeature2 = 456;
  LabelledExample example_1({FeatureValue(kFeature1), FeatureValue(kFeature1)},
                            TargetValue(789));
  LabelledExample example_2({FeatureValue(kFeature2), FeatureValue(kFeature2)},
                            TargetValue(987));
  EXPECT_TRUE(example_1 != example_2);
  EXPECT_FALSE(example_1 == example_2);
  // Exactly one should be less than the other, but we don't care which one.
  EXPECT_TRUE((example_1 < example_2) ^ (example_2 < example_1));
}

TEST_F(LearnerLabelledExampleTest, OrderingIsTransitive) {
  // Verify that ordering is transitive.  We don't particularly care what the
  // ordering is, otherwise.

  const FeatureValue kFeature1(123);
  const FeatureValue kFeature2(456);
  const FeatureValue kTarget1(789);
  const FeatureValue kTarget2(987);
  std::vector<LabelledExample> examples;
  examples.push_back(LabelledExample({kFeature1}, kTarget1));
  examples.push_back(LabelledExample({kFeature1}, kTarget2));
  examples.push_back(LabelledExample({kFeature2}, kTarget1));
  examples.push_back(LabelledExample({kFeature2}, kTarget2));
  examples.push_back(LabelledExample({kFeature1, kFeature2}, kTarget1));
  examples.push_back(LabelledExample({kFeature1, kFeature2}, kTarget2));
  examples.push_back(LabelledExample({kFeature2, kFeature1}, kTarget1));
  examples.push_back(LabelledExample({kFeature2, kFeature1}, kTarget2));

  // Sort, and make sure that it ends up totally ordered.
  std::sort(examples.begin(), examples.end());
  for (auto outer = examples.begin(); outer != examples.end(); outer++) {
    for (auto inner = outer + 1; inner != examples.end(); inner++) {
      EXPECT_TRUE(*outer < *inner);
      EXPECT_FALSE(*inner < *outer);
    }
  }
}

TEST_F(LearnerLabelledExampleTest, UnweightedTrainingDataPushBack) {
  // Test that pushing examples from unweighted storage into TrainingData works.
  TrainingData training_data;
  EXPECT_EQ(training_data.total_weight(), 0u);
  EXPECT_TRUE(training_data.empty());

  LabelledExample example({FeatureValue(123)}, TargetValue(789));
  training_data.push_back(example);
  EXPECT_EQ(training_data.total_weight(), 1u);
  EXPECT_FALSE(training_data.empty());
  EXPECT_TRUE(training_data.is_unweighted());
  EXPECT_EQ(training_data[0], example);
}

TEST_F(LearnerLabelledExampleTest, WeightedTrainingDataPushBack) {
  // Test that pushing examples from weighted storage into TrainingData works.
  TrainingData training_data;
  EXPECT_EQ(training_data.total_weight(), 0u);
  EXPECT_TRUE(training_data.empty());

  LabelledExample example({FeatureValue(123)}, TargetValue(789));
  const WeightType weight(10);
  example.weight = weight;
  training_data.push_back(example);
  training_data.push_back(example);

  EXPECT_EQ(training_data.total_weight(), weight * 2);
  EXPECT_FALSE(training_data.empty());
  EXPECT_FALSE(training_data.is_unweighted());
  EXPECT_EQ(training_data[0], example);
}

TEST_F(LearnerLabelledExampleTest, TrainingDataDeDuplicate) {
  // Make sure that TrainingData::DeDuplicate works properly.

  const WeightType weight_0_a(100);
  const WeightType weight_0_b(200);
  const WeightType weight_1(500);
  LabelledExample example_0({FeatureValue(123)}, TargetValue(789));
  LabelledExample example_1({FeatureValue(456)}, TargetValue(789));

  TrainingData training_data;
  example_0.weight = weight_0_a;
  training_data.push_back(example_0);
  example_1.weight = weight_1;
  training_data.push_back(example_1);
  example_0.weight = weight_0_b;
  training_data.push_back(example_0);

  EXPECT_EQ(training_data.total_weight(), weight_0_a + weight_0_b + weight_1);
  EXPECT_EQ(training_data.size(), 3u);
  EXPECT_EQ(training_data[0].weight, weight_0_a);
  EXPECT_EQ(training_data[1].weight, weight_1);
  EXPECT_EQ(training_data[2].weight, weight_0_b);

  TrainingData dedup = training_data.DeDuplicate();
  EXPECT_EQ(dedup.total_weight(), weight_0_a + weight_0_b + weight_1);
  EXPECT_EQ(dedup.size(), 2u);
  // We don't care which order they're in, so find the index of |example_0|.
  size_t idx_0 = (dedup[0] == example_0) ? 0 : 1;
  EXPECT_EQ(dedup[idx_0], example_0);
  EXPECT_EQ(dedup[idx_0].weight, weight_0_a + weight_0_b);
  EXPECT_EQ(dedup[1u - idx_0], example_1);
  EXPECT_EQ(dedup[1u - idx_0].weight, weight_1);
}

}  // namespace learning
}  // namespace media