1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118

media / learning / common / target_histogram.h [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef MEDIA_LEARNING_COMMON_TARGET_HISTOGRAM_H_
#define MEDIA_LEARNING_COMMON_TARGET_HISTOGRAM_H_

#include <ostream>
#include <string>

#include "base/component_export.h"
#include "base/containers/flat_map.h"
#include "media/learning/common/labelled_example.h"
#include "media/learning/common/value.h"

#include "mojo/public/cpp/bindings/struct_traits.h"  // nogncheck

namespace media {
namespace learning {

namespace mojom {
class TargetHistogramDataView;
}

// Intermediate type for mojom struct traits translation.
// See learning_types.mojom.
struct COMPONENT_EXPORT(LEARNING_COMMON) TargetHistogramPair {
  TargetValue target_value;
  double count;

  TargetHistogramPair() = default;

  TargetHistogramPair(const TargetValue& value, double count)
      : target_value(value), count(count) {}
};

// Histogram of target values that allows fractional counts.
class COMPONENT_EXPORT(LEARNING_COMMON) TargetHistogram {
 public:
  // We use a flat_map since this will often have only one or two TargetValues,
  // such as "true" or "false".
  using CountMap = base::flat_map<TargetValue, double>;

  TargetHistogram();
  TargetHistogram(const TargetHistogram& rhs);
  TargetHistogram(TargetHistogram&& rhs);
  ~TargetHistogram();

  TargetHistogram& operator=(const TargetHistogram& rhs);
  TargetHistogram& operator=(TargetHistogram&& rhs);

  bool operator==(const TargetHistogram& rhs) const;

  // Add |rhs| to our counts.
  TargetHistogram& operator+=(const TargetHistogram& rhs);

  // Increment |rhs| by one.
  TargetHistogram& operator+=(const TargetValue& rhs);

  // Increment the histogram by |example|'s target value and weight.
  TargetHistogram& operator+=(const LabelledExample& example);

  // Return the number of counts for |value|.
  double operator[](const TargetValue& value) const;
  double& operator[](const TargetValue& value);

  // Return the total counts in the map.
  double total_counts() const {
    double total = 0.;
    for (auto& entry : counts_)
      total += entry.second;
    return total;
  }

  CountMap::const_iterator begin() const { return counts_.begin(); }

  CountMap::const_iterator end() const { return counts_.end(); }

  // Return the number of buckets in the histogram.
  // TODO(liberato): Do we want this?
  size_t size() const { return counts_.size(); }

  // Find the singular value with the highest counts, and copy it into
  // |value_out| and (optionally) |counts_out|.  Returns true if there is a
  // singular maximum, else returns false with the out params undefined.
  bool FindSingularMax(TargetValue* value_out,
                       double* counts_out = nullptr) const;

  // Return the average value of the entries in this histogram.  Of course,
  // this only makes sense if the TargetValues can be interpreted as numeric.
  double Average() const;

  // Normalize the histogram so that it has one total count, unless it's
  // empty.  It will continue to have zero in that case.
  void Normalize();

  std::string ToString() const;

 private:
  friend struct mojo::StructTraits<
      media::learning::mojom::TargetHistogramDataView,
      media::learning::TargetHistogram>;

  const CountMap& counts() const { return counts_; }

  // [value] == counts
  CountMap counts_;

  // Allow copy and assign.
};

COMPONENT_EXPORT(LEARNING_COMMON)
std::ostream& operator<<(std::ostream& out, const TargetHistogram& dist);

}  // namespace learning
}  // namespace media

#endif  // MEDIA_LEARNING_COMMON_TARGET_HISTOGRAM_H_