1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
media / learning / impl / distribution_reporter_unittest.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <memory>
#include <vector>
#include "base/functional/bind.h"
#include "base/memory/raw_ptr.h"
#include "base/test/task_environment.h"
#include "components/ukm/test_ukm_recorder.h"
#include "media/learning/common/learning_task.h"
#include "media/learning/impl/distribution_reporter.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
namespace learning {
class DistributionReporterTest : public testing::Test {
public:
DistributionReporterTest()
: ukm_recorder_(std::make_unique<ukm::TestAutoSetUkmRecorder>()),
source_id_(123) {
task_.name = "TaskName";
// UMA reporting requires a numeric target.
task_.target_description.ordering = LearningTask::Ordering::kNumeric;
}
base::test::TaskEnvironment task_environment_;
std::unique_ptr<ukm::TestAutoSetUkmRecorder> ukm_recorder_;
LearningTask task_;
ukm::SourceId source_id_;
std::unique_ptr<DistributionReporter> reporter_;
TargetHistogram HistogramFor(double value) {
TargetHistogram histogram;
histogram += TargetValue(value);
return histogram;
}
};
TEST_F(DistributionReporterTest, DistributionReporterDoesNotCrash) {
// Make sure that we request some sort of reporting.
task_.uma_hacky_aggregate_confusion_matrix = true;
reporter_ = DistributionReporter::Create(task_);
EXPECT_NE(reporter_, nullptr);
// Observe an average of 2 / 3.
DistributionReporter::PredictionInfo info;
info.observed = TargetValue(2.0 / 3.0);
auto cb = reporter_->GetPredictionCallback(info);
TargetHistogram predicted;
const TargetValue Zero(0);
const TargetValue One(1);
// Predict an average of 5 / 9.
predicted[Zero] = 40;
predicted[One] = 50;
std::move(cb).Run(predicted);
}
TEST_F(DistributionReporterTest, CallbackRecordsRegressionPredictions) {
// Make sure that |reporter_| records everything correctly for regressions.
task_.target_description.ordering = LearningTask::Ordering::kNumeric;
// Scale 1-2 => 0->100.
task_.ukm_min_input_value = 1.;
task_.ukm_max_input_value = 2.;
task_.report_via_ukm = true;
reporter_ = DistributionReporter::Create(task_);
EXPECT_NE(reporter_, nullptr);
DistributionReporter::PredictionInfo info;
info.observed = TargetValue(1.1); // => 10
info.source_id = source_id_;
auto cb = reporter_->GetPredictionCallback(info);
TargetHistogram predicted;
const TargetValue One(1);
const TargetValue Five(5);
// Predict an average of 1.5 => 50 in the 0-100 scale.
predicted[One] = 70;
predicted[Five] = 10;
ASSERT_EQ(predicted.Average(), 1.5);
std::move(cb).Run(predicted);
// The record should show the correct averages, scaled by |fixed_point_scale|.
std::vector<raw_ptr<const ukm::mojom::UkmEntry, VectorExperimental>> entries =
ukm_recorder_->GetEntriesByName("Media.Learning.PredictionRecord");
EXPECT_EQ(entries.size(), 1u);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[0], "LearningTask",
task_.GetId());
ukm::TestUkmRecorder::ExpectEntryMetric(entries[0], "ObservedValue", 10);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[0], "PredictedValue", 50);
}
TEST_F(DistributionReporterTest, DistributionReporterNeedsUmaNameOrUkm) {
// Make sure that we don't get a reporter if we don't request any reporting.
task_.target_description.ordering = LearningTask::Ordering::kNumeric;
task_.uma_hacky_aggregate_confusion_matrix = false;
task_.uma_hacky_by_training_weight_confusion_matrix = false;
task_.uma_hacky_by_feature_subset_confusion_matrix = false;
task_.report_via_ukm = false;
reporter_ = DistributionReporter::Create(task_);
EXPECT_EQ(reporter_, nullptr);
}
TEST_F(DistributionReporterTest,
DistributionReporterHackyConfusionMatrixNeedsRegression) {
// Hacky confusion matrix reporting only works with regression.
task_.target_description.ordering = LearningTask::Ordering::kUnordered;
task_.uma_hacky_aggregate_confusion_matrix = true;
reporter_ = DistributionReporter::Create(task_);
EXPECT_EQ(reporter_, nullptr);
}
TEST_F(DistributionReporterTest, ProvidesAggregateReporter) {
task_.uma_hacky_aggregate_confusion_matrix = true;
reporter_ = DistributionReporter::Create(task_);
EXPECT_NE(reporter_, nullptr);
}
TEST_F(DistributionReporterTest, ProvidesByTrainingWeightReporter) {
task_.uma_hacky_by_training_weight_confusion_matrix = true;
reporter_ = DistributionReporter::Create(task_);
EXPECT_NE(reporter_, nullptr);
}
TEST_F(DistributionReporterTest, ProvidesByFeatureSubsetReporter) {
task_.uma_hacky_by_feature_subset_confusion_matrix = true;
reporter_ = DistributionReporter::Create(task_);
EXPECT_NE(reporter_, nullptr);
}
TEST_F(DistributionReporterTest, UkmBucketizesProperly) {
task_.target_description.ordering = LearningTask::Ordering::kNumeric;
// Scale [1000, 2000] => [0, 100]
task_.ukm_min_input_value = 1000;
task_.ukm_max_input_value = 2000;
task_.report_via_ukm = true;
reporter_ = DistributionReporter::Create(task_);
DistributionReporter::PredictionInfo info;
info.source_id = source_id_;
// Add a few predictions / observations. We rotate the predicted / observed
// just to be sure they end up in the right UKM field.
// Inputs less than min scale to 0.
info.observed = TargetValue(900);
reporter_->GetPredictionCallback(info).Run(HistogramFor(1500));
// Inputs exactly at min scale to 0.
info.observed = TargetValue(1000);
reporter_->GetPredictionCallback(info).Run(HistogramFor(2000));
// Inputs in the middle scale to 50.
info.observed = TargetValue(1500);
reporter_->GetPredictionCallback(info).Run(HistogramFor(2100));
// Inputs at max scale to 100.
info.observed = TargetValue(2000);
reporter_->GetPredictionCallback(info).Run(HistogramFor(900));
// Inputs greater than max scale to 100.
info.observed = TargetValue(2100);
reporter_->GetPredictionCallback(info).Run(HistogramFor(1000));
std::vector<raw_ptr<const ukm::mojom::UkmEntry, VectorExperimental>> entries =
ukm_recorder_->GetEntriesByName("Media.Learning.PredictionRecord");
EXPECT_EQ(entries.size(), 5u);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[0], "ObservedValue", 0);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[0], "PredictedValue", 50);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[1], "ObservedValue", 0);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[1], "PredictedValue", 100);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[2], "ObservedValue", 50);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[2], "PredictedValue", 100);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[3], "ObservedValue", 100);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[3], "PredictedValue", 0);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[4], "ObservedValue", 100);
ukm::TestUkmRecorder::ExpectEntryMetric(entries[4], "PredictedValue", 0);
}
} // namespace learning
} // namespace media