1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209

media / learning / impl / extra_trees_trainer_unittest.cc [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/learning/impl/extra_trees_trainer.h"

#include "base/functional/bind.h"
#include "base/memory/ref_counted.h"
#include "base/test/task_environment.h"
#include "media/learning/impl/fisher_iris_dataset.h"
#include "media/learning/impl/test_random_number_generator.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace media {
namespace learning {

class ExtraTreesTest : public testing::TestWithParam<LearningTask::Ordering> {
 public:
  ExtraTreesTest() : rng_(0), ordering_(GetParam()) {
    trainer_.SetRandomNumberGeneratorForTesting(&rng_);
  }

  // Set up |task_| to have |n| features with the given ordering.
  void SetupFeatures(size_t n) {
    for (size_t i = 0; i < n; i++) {
      LearningTask::ValueDescription desc;
      desc.ordering = ordering_;
      task_.feature_descriptions.push_back(desc);
    }
  }

  std::unique_ptr<Model> Train(const LearningTask& task,
                               const TrainingData& data) {
    std::unique_ptr<Model> model;
    trainer_.Train(
        task_, data,
        base::BindOnce(
            [](std::unique_ptr<Model>* model_out,
               std::unique_ptr<Model> model) { *model_out = std::move(model); },
            &model));
    task_environment_.RunUntilIdle();
    return model;
  }

  base::test::TaskEnvironment task_environment_;

  TestRandomNumberGenerator rng_;
  ExtraTreesTrainer trainer_;
  LearningTask task_;
  // Feature ordering.
  LearningTask::Ordering ordering_;
};

TEST_P(ExtraTreesTest, EmptyTrainingDataWorks) {
  TrainingData empty;
  auto model = Train(task_, empty);
  EXPECT_NE(model.get(), nullptr);
  EXPECT_EQ(model->PredictDistribution(FeatureVector()), TargetHistogram());
}

TEST_P(ExtraTreesTest, FisherIrisDataset) {
  SetupFeatures(4);
  FisherIrisDataset iris;
  TrainingData training_data = iris.GetTrainingData();
  auto model = Train(task_, training_data);

  // Verify predictions on the training set, just for sanity.
  size_t num_correct = 0;
  for (const LabelledExample& example : training_data) {
    TargetHistogram distribution = model->PredictDistribution(example.features);
    TargetValue predicted_value;
    if (distribution.FindSingularMax(&predicted_value) &&
        predicted_value == example.target_value) {
      num_correct += example.weight;
    }
  }

  // Expect very high accuracy.  We should get ~100%.
  double train_accuracy = ((double)num_correct) / training_data.total_weight();
  EXPECT_GT(train_accuracy, 0.95);
}

TEST_P(ExtraTreesTest, WeightedTrainingSetIsSupported) {
  // Create a training set with unseparable data, but give one of them a large
  // weight.  See if that one wins.
  SetupFeatures(1);
  LabelledExample example_1({FeatureValue(123)}, TargetValue(1));
  LabelledExample example_2({FeatureValue(123)}, TargetValue(2));
  const size_t weight = 100;
  TrainingData training_data;
  example_1.weight = weight;
  training_data.push_back(example_1);
  // Push many |example_2|'s, which will win without the weights.
  training_data.push_back(example_2);
  training_data.push_back(example_2);
  training_data.push_back(example_2);
  training_data.push_back(example_2);

  // Create a weighed set with |weight| for each example's weight.
  EXPECT_FALSE(training_data.is_unweighted());
  auto model = Train(task_, training_data);

  // The singular max should be example_1.
  TargetHistogram distribution = model->PredictDistribution(example_1.features);
  TargetValue predicted_value;
  EXPECT_TRUE(distribution.FindSingularMax(&predicted_value));
  EXPECT_EQ(predicted_value, example_1.target_value);
}

TEST_P(ExtraTreesTest, RegressionWorks) {
  // Create a training set with unseparable data, but give one of them a large
  // weight.  See if that one wins.
  SetupFeatures(2);
  LabelledExample example_1({FeatureValue(1), FeatureValue(123)},
                            TargetValue(1));
  LabelledExample example_1_a({FeatureValue(1), FeatureValue(123)},
                              TargetValue(5));
  LabelledExample example_2({FeatureValue(1), FeatureValue(456)},
                            TargetValue(20));
  LabelledExample example_2_a({FeatureValue(1), FeatureValue(456)},
                              TargetValue(25));
  TrainingData training_data;
  example_1.weight = 100;
  training_data.push_back(example_1);
  training_data.push_back(example_1_a);
  example_2.weight = 100;
  training_data.push_back(example_2);
  training_data.push_back(example_2_a);

  task_.target_description.ordering = LearningTask::Ordering::kNumeric;

  // Create a weighed set with |weight| for each example's weight.
  auto model = Train(task_, training_data);

  // Make sure that the results are in the right range.
  TargetHistogram distribution = model->PredictDistribution(example_1.features);
  EXPECT_GT(distribution.Average(), example_1.target_value.value() * 0.95);
  EXPECT_LT(distribution.Average(), example_1.target_value.value() * 1.05);
  distribution = model->PredictDistribution(example_2.features);
  EXPECT_GT(distribution.Average(), example_2.target_value.value() * 0.95);
  EXPECT_LT(distribution.Average(), example_2.target_value.value() * 1.05);
}

TEST_P(ExtraTreesTest, RegressionVsBinaryClassification) {
  // Create a binary classification task and a regression task that are roughly
  // the same.  Verify that the results are the same, too.  In particular, for
  // each set of features, we choose a regression target |pct| between 0 and
  // 100.  For the corresponding binary classification problem, we add |pct|
  // true instances, and 100-|pct| false instances.  The predicted averages
  // should be roughly the same.
  SetupFeatures(3);
  TrainingData c_data, r_data;

  std::set<LabelledExample> r_examples;
  for (size_t i = 0; i < 4 * 4 * 4; i++) {
    FeatureValue f1(i & 3);
    FeatureValue f2((i >> 2) & 3);
    FeatureValue f3((i >> 4) & 3);
    int frac = (1.0 * (f1.value() + f2.value() + f3.value())) / 9;
    LabelledExample e({f1, f2, f3}, TargetValue(0));

    // TODO(liberato): Consider adding noise, and verifying that the model
    // predictions are roughly the same as each other, rather than the same as
    // the currently noise-free target.

    // Push some number of false and some number of true instances that is in
    // the right ratio for |frac|.
    const int total_examples = 100;
    const int positive_examples = total_examples * frac;
    e.weight = total_examples - positive_examples;
    if (e.weight > 0)
      c_data.push_back(e);
    e.target_value = TargetValue(1.0);
    e.weight = positive_examples;
    if (e.weight > 0)
      c_data.push_back(e);

    // For the regression data, add an example with |frac| directly.  Also save
    // it so that we can look up the right answer below.
    LabelledExample r_example(LabelledExample({f1, f2, f3}, TargetValue(frac)));
    r_examples.insert(r_example);
    r_data.push_back(r_example);
  }

  // Train a model on the binary classification task and the regression task.
  auto c_model = Train(task_, c_data);
  task_.target_description.ordering = LearningTask::Ordering::kNumeric;
  auto r_model = Train(task_, r_data);

  // Verify that, for all feature combinations, the models roughly agree.  Since
  // the data is separable, it probably should be exact.
  for (auto& r_example : r_examples) {
    const FeatureVector& fv = r_example.features;
    TargetHistogram c_dist = c_model->PredictDistribution(fv);
    EXPECT_LE(c_dist.Average(), r_example.target_value.value() * 1.05);
    EXPECT_GE(c_dist.Average(), r_example.target_value.value() * 0.95);
    TargetHistogram r_dist = r_model->PredictDistribution(fv);
    EXPECT_LE(r_dist.Average(), r_example.target_value.value() * 1.05);
    EXPECT_GE(r_dist.Average(), r_example.target_value.value() * 0.95);
  }
}

INSTANTIATE_TEST_SUITE_P(ExtraTreesTest,
                         ExtraTreesTest,
                         testing::ValuesIn({LearningTask::Ordering::kUnordered,
                                            LearningTask::Ordering::kNumeric}));

}  // namespace learning
}  // namespace media