1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317

media / learning / impl / learning_task_controller_impl_unittest.cc [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/learning/impl/learning_task_controller_impl.h"

#include <array>
#include <utility>

#include "base/functional/bind.h"
#include "base/memory/raw_ptr.h"
#include "base/task/sequenced_task_runner.h"
#include "base/test/task_environment.h"
#include "media/learning/impl/distribution_reporter.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace media {
namespace learning {

class LearningTaskControllerImplTest : public testing::Test {
 public:
  class FakeDistributionReporter : public DistributionReporter {
   public:
    FakeDistributionReporter(const LearningTask& task)
        : DistributionReporter(task) {}

    // protected => public
    const std::optional<std::set<int>>& feature_indices() const {
      return DistributionReporter::feature_indices();
    }

   protected:
    void OnPrediction(const PredictionInfo& info,
                      TargetHistogram predicted) override {
      num_reported_++;
      TargetHistogram dist;
      dist += info.observed;
      if (dist == predicted)
        num_correct_++;
      most_recent_source_id_ = info.source_id;
    }

   public:
    int num_reported_ = 0;
    int num_correct_ = 0;
    ukm::SourceId most_recent_source_id_;
  };

  // Model that always predicts a constant.
  class FakeModel : public Model {
   public:
    FakeModel(TargetValue target) : target_(target) {}

    // Model
    TargetHistogram PredictDistribution(
        const FeatureVector& features) override {
      TargetHistogram dist;
      dist += target_;
      return dist;
    }

   private:
    // The value we predict.
    TargetValue target_;
  };

  class FakeTrainer : public TrainingAlgorithm {
   public:
    // |num_models| is where we'll record how many models we've trained.
    // |target_value| is the prediction that our trained model will make.
    FakeTrainer(int* num_models, TargetValue target_value)
        : num_models_(num_models), target_value_(target_value) {}
    ~FakeTrainer() override {}

    void Train(const LearningTask& task,
               const TrainingData& training_data,
               TrainedModelCB model_cb) override {
      task_ = task;
      (*num_models_)++;
      training_data_ = training_data;
      std::move(model_cb).Run(std::make_unique<FakeModel>(target_value_));
    }

    const LearningTask& task() const { return task_; }

    const TrainingData& training_data() const { return training_data_; }

   private:
    LearningTask task_;
    raw_ptr<int> num_models_ = nullptr;
    TargetValue target_value_;

    // Most recently provided training data.
    TrainingData training_data_;
  };

  // Increments feature 0.
  class FakeFeatureProvider : public FeatureProvider {
   public:
    void AddFeatures(FeatureVector features, FeatureVectorCB cb) override {
      features[0] = FeatureValue(features[0].value() + 1);
      std::move(cb).Run(features);
    }
  };

  LearningTaskControllerImplTest()
      : predicted_target_(123), not_predicted_target_(456) {
    // Set the name so that we can check it later.
    task_.name = "TestTask";
    // Don't require too many training examples per report.
    task_.max_data_set_size = 20;
    task_.min_new_data_fraction = 0.1;
  }

  ~LearningTaskControllerImplTest() override {
    // To prevent a memory leak, reset the controller.  This may post
    // destruction of other objects, so RunUntilIdle().
    controller_.reset();
    task_environment_.RunUntilIdle();
  }

  void CreateController(SequenceBoundFeatureProvider feature_provider =
                            SequenceBoundFeatureProvider()) {
    std::unique_ptr<FakeDistributionReporter> reporter =
        std::make_unique<FakeDistributionReporter>(task_);
    reporter_raw_ = reporter.get();

    controller_ = std::make_unique<LearningTaskControllerImpl>(
        task_, std::move(reporter), std::move(feature_provider));

    auto fake_trainer =
        std::make_unique<FakeTrainer>(&num_models_, predicted_target_);
    trainer_raw_ = fake_trainer.get();
    controller_->SetTrainerForTesting(std::move(fake_trainer));
  }

  void AddExample(const LabelledExample& example,
                  std::optional<ukm::SourceId> source_id = std::nullopt) {
    base::UnguessableToken id = base::UnguessableToken::Create();
    controller_->BeginObservation(id, example.features, std::nullopt,
                                  source_id);
    controller_->CompleteObservation(
        id, ObservationCompletion(example.target_value, example.weight));
  }

  void VerifyPrediction(const FeatureVector& features,
                        std::optional<TargetHistogram> expectation) {
    std::optional<TargetHistogram> observed_prediction;
    controller_->PredictDistribution(
        features, base::BindOnce(
                      [](std::optional<TargetHistogram>* test_storage,
                         const std::optional<TargetHistogram>& predicted) {
                        *test_storage = predicted;
                      },
                      &observed_prediction));
    task_environment_.RunUntilIdle();
    EXPECT_EQ(observed_prediction, expectation);
  }

  base::test::TaskEnvironment task_environment_;

  // Number of models that we trained.
  int num_models_ = 0;

  // Two distinct targets.
  const TargetValue predicted_target_;
  const TargetValue not_predicted_target_;

  raw_ptr<FakeDistributionReporter, DanglingUntriaged> reporter_raw_ = nullptr;
  raw_ptr<FakeTrainer, DanglingUntriaged> trainer_raw_ = nullptr;

  LearningTask task_;
  std::unique_ptr<LearningTaskControllerImpl> controller_;
};

TEST_F(LearningTaskControllerImplTest, AddingExamplesTrainsModelAndReports) {
  CreateController();

  LabelledExample example;

  // Up to the first 1/training_fraction examples should train on each example.
  // Make each of the examples agree on |predicted_target_|.
  example.target_value = predicted_target_;
  int count = static_cast<int>(1.0 / task_.min_new_data_fraction);
  for (int i = 0; i < count; i++) {
    AddExample(example);
    EXPECT_EQ(num_models_, i + 1);
    // All examples except the first should be reported as correct.  For the
    // first, there's no model to test again.
    EXPECT_EQ(reporter_raw_->num_reported_, i);
    EXPECT_EQ(reporter_raw_->num_correct_, i);
  }
  // The next |count| should train every other one.
  for (int i = 0; i < count; i++) {
    AddExample(example);
    EXPECT_EQ(num_models_, count + (i + 1) / 2);
  }

  // The next |count| should be the same, since we've reached the max training
  // set size.
  for (int i = 0; i < count; i++) {
    AddExample(example);
    EXPECT_EQ(num_models_, count + count / 2 + (i + 1) / 2);
  }

  // We should have reported results for each except the first.  All of them
  // should be correct, since there's only one target so far.
  EXPECT_EQ(reporter_raw_->num_reported_, count * 3 - 1);
  EXPECT_EQ(reporter_raw_->num_correct_, count * 3 - 1);

  // Adding a value that doesn't match should report one more attempt, with an
  // incorrect prediction.
  example.target_value = not_predicted_target_;
  AddExample(example);
  EXPECT_EQ(reporter_raw_->num_reported_, count * 3);
  EXPECT_EQ(reporter_raw_->num_correct_, count * 3 - 1);  // Unchanged.
}

TEST_F(LearningTaskControllerImplTest, FeatureProviderIsUsed) {
  // If a FeatureProvider factory is provided, make sure that it's used to
  // adjust new examples.
  task_.feature_descriptions.push_back({"AddedByFeatureProvider"});
  SequenceBoundFeatureProvider feature_provider =
      base::SequenceBound<FakeFeatureProvider>(
          base::SequencedTaskRunner::GetCurrentDefault());
  CreateController(std::move(feature_provider));
  LabelledExample example;
  example.features.push_back(FeatureValue(123));
  example.weight = 321u;
  AddExample(example);
  task_environment_.RunUntilIdle();
  EXPECT_EQ(trainer_raw_->training_data()[0].features[0], FeatureValue(124));
  EXPECT_EQ(trainer_raw_->training_data()[0].weight, example.weight);
}

TEST_F(LearningTaskControllerImplTest, FeatureSubsetsWork) {
  auto feature_names = std::to_array<const char*>({
      "feature0",
      "feature1",
      "feature2",
      "feature3",
      "feature4",
      "feature5",
      "feature6",
      "feature7",
      "feature8",
      "feature9",
      "feature10",
      "feature11",
  });
  for (const char* feature_name : feature_names) {
    task_.feature_descriptions.push_back({feature_name});
  }
  const size_t subset_size = 4;
  task_.feature_subset_size = subset_size;
  CreateController();

  // Verify that the reporter is given a subset of the features.
  auto subset = *reporter_raw_->feature_indices();
  EXPECT_EQ(subset.size(), subset_size);

  // Train a model.  Each feature will have a unique value.
  LabelledExample example;
  for (size_t i = 0; i < feature_names.size(); i++) {
    example.features.push_back(FeatureValue(i));
  }
  AddExample(example);

  // Verify that all feature names in |subset| are present in the task.
  FeatureVector expected_features;
  expected_features.resize(subset_size);
  EXPECT_EQ(trainer_raw_->task().feature_descriptions.size(), subset_size);
  for (auto& iter : subset) {
    bool found = false;
    for (size_t i = 0; i < subset_size; i++) {
      if (trainer_raw_->task().feature_descriptions[i].name ==
          feature_names[iter]) {
        // Also build a vector with the features in the expected order.
        expected_features[i] = example.features[iter];
        found = true;
        break;
      }
    }
    EXPECT_TRUE(found);
  }

  // Verify that the training data has the adjusted features.
  EXPECT_EQ(trainer_raw_->training_data().size(), 1u);
  EXPECT_EQ(trainer_raw_->training_data()[0].features, expected_features);
}

TEST_F(LearningTaskControllerImplTest, PredictDistribution) {
  CreateController();

  // Predictions should be std::nullopt until we have a model.
  LabelledExample example;
  VerifyPrediction(example.features, std::nullopt);

  AddExample(example);
  TargetHistogram expected_histogram;
  expected_histogram += predicted_target_;
  VerifyPrediction(example.features, expected_histogram);
}

TEST_F(LearningTaskControllerImplTest,
       SourceIdIsProvidedToDistributionReporter) {
  CreateController();
  LabelledExample example;
  ukm::SourceId source_id(123);
  // Add two examples, so that the second causes a prediction to be reported.
  AddExample(example, source_id);
  AddExample(example, source_id);
  EXPECT_EQ(reporter_raw_->most_recent_source_id_, source_id);
}

}  // namespace learning
}  // namespace media