1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217

media / learning / impl / random_tree_trainer_unittest.cc [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/learning/impl/random_tree_trainer.h"

#include "base/functional/bind.h"
#include "base/run_loop.h"
#include "base/test/task_environment.h"
#include "media/learning/impl/test_random_number_generator.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace media {
namespace learning {

class RandomTreeTest : public testing::TestWithParam<LearningTask::Ordering> {
 public:
  RandomTreeTest()
      : rng_(0),
        trainer_(&rng_),
        ordering_(GetParam()) {}

  // Set up |task_| to have |n| features with the given ordering.
  void SetupFeatures(size_t n) {
    for (size_t i = 0; i < n; i++) {
      LearningTask::ValueDescription desc;
      desc.ordering = ordering_;
      task_.feature_descriptions.push_back(desc);
    }
  }

  std::unique_ptr<Model> Train(const LearningTask& task,
                               const TrainingData& data) {
    std::unique_ptr<Model> model;
    trainer_.Train(
        task_, data,
        base::BindOnce(
            [](std::unique_ptr<Model>* model_out,
               std::unique_ptr<Model> model) { *model_out = std::move(model); },
            &model));
    task_environment_.RunUntilIdle();
    return model;
  }

  base::test::TaskEnvironment task_environment_;

  TestRandomNumberGenerator rng_;
  RandomTreeTrainer trainer_;
  LearningTask task_;
  // Feature ordering.
  LearningTask::Ordering ordering_;
};

TEST_P(RandomTreeTest, EmptyTrainingDataWorks) {
  TrainingData empty;
  std::unique_ptr<Model> model = Train(task_, empty);
  EXPECT_NE(model.get(), nullptr);
  EXPECT_EQ(model->PredictDistribution(FeatureVector()), TargetHistogram());
}

TEST_P(RandomTreeTest, UniformTrainingDataWorks) {
  SetupFeatures(2);
  LabelledExample example({FeatureValue(123), FeatureValue(456)},
                          TargetValue(789));
  TrainingData training_data;
  const size_t n_examples = 10;
  for (size_t i = 0; i < n_examples; i++)
    training_data.push_back(example);
  std::unique_ptr<Model> model = Train(task_, training_data);

  // The tree should produce a distribution for one value (our target), which
  // has one count.
  TargetHistogram distribution = model->PredictDistribution(example.features);
  EXPECT_EQ(distribution.size(), 1u);
  EXPECT_EQ(distribution[example.target_value], 1.0);
}

TEST_P(RandomTreeTest, SimpleSeparableTrainingData) {
  SetupFeatures(1);
  TrainingData training_data;
  LabelledExample example_1({FeatureValue(123)}, TargetValue(1));
  LabelledExample example_2({FeatureValue(456)}, TargetValue(2));
  training_data.push_back(example_1);
  training_data.push_back(example_2);
  std::unique_ptr<Model> model = Train(task_, training_data);

  // Each value should have a distribution with one target value with one count.
  TargetHistogram distribution = model->PredictDistribution(example_1.features);
  EXPECT_NE(model.get(), nullptr);
  EXPECT_EQ(distribution.size(), 1u);
  EXPECT_EQ(distribution[example_1.target_value], 1u);

  distribution = model->PredictDistribution(example_2.features);
  EXPECT_EQ(distribution.size(), 1u);
  EXPECT_EQ(distribution[example_2.target_value], 1u);
}

TEST_P(RandomTreeTest, ComplexSeparableTrainingData) {
  // Building a random tree with numeric splits isn't terribly likely to work,
  // so just skip it.  Entirely randomized splits are just too random.  The
  // RandomForest unittests will test them as part of an ensemble.
  if (ordering_ == LearningTask::Ordering::kNumeric)
    return;

  SetupFeatures(4);
  // Build a four-feature training set that's completely separable, but one
  // needs all four features to do it.
  TrainingData training_data;
  for (int f1 = 0; f1 < 2; f1++) {
    for (int f2 = 0; f2 < 2; f2++) {
      for (int f3 = 0; f3 < 2; f3++) {
        for (int f4 = 0; f4 < 2; f4++) {
          LabelledExample example(
              {FeatureValue(f1), FeatureValue(f2), FeatureValue(f3),
               FeatureValue(f4)},
              TargetValue(f1 * 1 + f2 * 2 + f3 * 4 + f4 * 8));
          // Add two copies of each example.
          training_data.push_back(example);
          training_data.push_back(example);
        }
      }
    }
  }

  std::unique_ptr<Model> model = Train(task_, training_data);
  EXPECT_NE(model.get(), nullptr);

  // Each example should have a distribution that selects the right value.
  for (const LabelledExample& example : training_data) {
    TargetHistogram distribution = model->PredictDistribution(example.features);
    TargetValue singular_max;
    EXPECT_TRUE(distribution.FindSingularMax(&singular_max));
    EXPECT_EQ(singular_max, example.target_value);
  }
}

TEST_P(RandomTreeTest, UnseparableTrainingData) {
  SetupFeatures(1);
  TrainingData training_data;
  LabelledExample example_1({FeatureValue(123)}, TargetValue(1));
  LabelledExample example_2({FeatureValue(123)}, TargetValue(2));
  training_data.push_back(example_1);
  training_data.push_back(example_2);
  std::unique_ptr<Model> model = Train(task_, training_data);
  EXPECT_NE(model.get(), nullptr);

  // Each value should have a distribution with two targets with equal counts.
  TargetHistogram distribution = model->PredictDistribution(example_1.features);
  EXPECT_EQ(distribution.size(), 2u);
  EXPECT_EQ(distribution[example_1.target_value], 0.5);
  EXPECT_EQ(distribution[example_2.target_value], 0.5);

  distribution = model->PredictDistribution(example_2.features);
  EXPECT_EQ(distribution.size(), 2u);
  EXPECT_EQ(distribution[example_1.target_value], 0.5);
  EXPECT_EQ(distribution[example_2.target_value], 0.5);
}

TEST_P(RandomTreeTest, UnknownFeatureValueHandling) {
  // Verify how a previously unseen feature value is handled.
  SetupFeatures(1);
  TrainingData training_data;
  LabelledExample example_1({FeatureValue(123)}, TargetValue(1));
  LabelledExample example_2({FeatureValue(456)}, TargetValue(2));
  training_data.push_back(example_1);
  training_data.push_back(example_2);

  auto model = Train(task_, training_data);
  auto distribution =
      model->PredictDistribution(FeatureVector({FeatureValue(789)}));
  if (ordering_ == LearningTask::Ordering::kUnordered) {
    // OOV data could be split on either feature first, so we don't really know
    // which to expect.  We assert that there should be exactly one example, but
    // whether it's |example_1| or |example_2| isn't clear.
    EXPECT_EQ(distribution.size(), 1u);
    EXPECT_EQ(distribution[example_1.target_value] +
                  distribution[example_2.target_value],
              1u);
  } else {
    // The unknown feature is numerically higher than |example_2|, so we
    // expect it to fall into that bucket.
    EXPECT_EQ(distribution.size(), 1u);
    EXPECT_EQ(distribution[example_2.target_value], 1u);
  }
}

TEST_P(RandomTreeTest, NumericFeaturesSplitMultipleTimes) {
  // Verify that numeric features can be split more than once in the tree.
  // This should also pass for nominal features, though it's less interesting.
  SetupFeatures(1);
  TrainingData training_data;
  const int feature_mult = 10;
  for (size_t i = 0; i < 4; i++) {
    LabelledExample example({FeatureValue(i * feature_mult)}, TargetValue(i));
    training_data.push_back(example);
  }

  std::unique_ptr<Model> model = Train(task_, training_data);
  for (size_t i = 0; i < 4; i++) {
    // Get a prediction for the |i|-th feature value.
    TargetHistogram distribution = model->PredictDistribution(
        FeatureVector({FeatureValue(i * feature_mult)}));
    // The distribution should have one count that should be correct.  If
    // the feature isn't split four times, then some feature value will have too
    // many or too few counts.
    EXPECT_EQ(distribution.total_counts(), 1u);
    EXPECT_EQ(distribution[TargetValue(i)], 1u);
  }
}

INSTANTIATE_TEST_SUITE_P(RandomTreeTest,
                         RandomTreeTest,
                         testing::ValuesIn({LearningTask::Ordering::kUnordered,
                                            LearningTask::Ordering::kNumeric}));

}  // namespace learning
}  // namespace media