1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
media / parsers / h266_nalu_parser.cc [blame]
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/parsers/h266_nalu_parser.h"
#include <stddef.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include "base/logging.h"
#include "media/base/decrypt_config.h"
#include "media/parsers/bit_reader_macros.h"
namespace media {
H266NALU::H266NALU() {
memset(reinterpret_cast<void*>(this), 0, sizeof(*this));
}
H266NaluParser::H266NaluParser() {
Reset();
}
H266NaluParser::~H266NaluParser() = default;
void H266NaluParser::Reset() {
stream_ = nullptr;
bytes_left_ = 0;
encrypted_ranges_.clear();
previous_nalu_range_.clear();
}
void H266NaluParser::SetStream(const uint8_t* stream, off_t stream_size) {
std::vector<SubsampleEntry> subsamples;
SetEncryptedStream(stream, stream_size, subsamples);
}
void H266NaluParser::SetEncryptedStream(
const uint8_t* stream,
off_t stream_size,
const std::vector<SubsampleEntry>& subsamples) {
DCHECK(stream);
DCHECK_GT(stream_size, 0);
stream_ = stream;
bytes_left_ = stream_size;
previous_nalu_range_.clear();
encrypted_ranges_.clear();
const uint8_t* start = stream;
const uint8_t* stream_end = stream_ + bytes_left_;
for (size_t i = 0; i < subsamples.size() && start < stream_end; ++i) {
start += subsamples[i].clear_bytes;
const uint8_t* end =
std::min(start + subsamples[i].cypher_bytes, stream_end);
encrypted_ranges_.Add(start, end);
start = end;
}
}
bool H266NaluParser::LocateNALU(off_t* nalu_size, off_t* start_code_size) {
// Find the start code of next NALU.
off_t nalu_start_off = 0;
off_t annexb_start_code_size = 0;
if (!H264Parser::FindStartCodeInClearRanges(
stream_, bytes_left_, encrypted_ranges_, &nalu_start_off,
&annexb_start_code_size)) {
DVLOG(4) << "Could not find start code, end of stream?";
return false;
}
// Move the stream to the beginning of the NALU (pointing at the start code).
stream_ += nalu_start_off;
bytes_left_ -= nalu_start_off;
const uint8_t* nalu_data = stream_ + annexb_start_code_size;
off_t max_nalu_data_size = bytes_left_ - annexb_start_code_size;
if (max_nalu_data_size <= 0) {
DVLOG(3) << "End of stream";
return false;
}
// Find the start code of next NALU;
// if successful, |nalu_size_without_start_code| is the number of bytes from
// after previous start code to before this one;
// if next start code is not found, it is still a valid NALU since there
// are some bytes left after the first start code: all the remaining bytes
// belong to the current NALU.
off_t next_start_code_size = 0;
off_t nalu_size_without_start_code = 0;
if (!H264Parser::FindStartCodeInClearRanges(
nalu_data, max_nalu_data_size, encrypted_ranges_,
&nalu_size_without_start_code, &next_start_code_size)) {
nalu_size_without_start_code = max_nalu_data_size;
}
*nalu_size = nalu_size_without_start_code + annexb_start_code_size;
*start_code_size = annexb_start_code_size;
return true;
}
H266NaluParser::Result H266NaluParser::AdvanceToNextNALU(H266NALU* nalu) {
off_t start_code_size;
off_t nalu_size_with_start_code;
if (!LocateNALU(&nalu_size_with_start_code, &start_code_size)) {
DVLOG(4) << "Could not find next NALU, bytes left in stream: "
<< bytes_left_;
return kEndOfStream;
}
DCHECK(nalu);
nalu->data = stream_ + start_code_size;
nalu->size = nalu_size_with_start_code - start_code_size;
DVLOG(4) << "NALU found: size=" << nalu_size_with_start_code;
// Initialize bit reader at the start of found NALU.
if (!br_.Initialize(nalu->data, nalu->size)) {
return kEndOfStream;
}
// Move parser state to after this NALU, so next time AdvanceToNextNALU
// is called, we will effectively be skipping it;
// other parsing functions will use the position saved
// in bit reader for parsing, so we don't have to remember it here.
stream_ += nalu_size_with_start_code;
bytes_left_ -= nalu_size_with_start_code;
// Read NALU header, skip the forbidden_zero_bit, but check for it.
int data;
READ_BITS_OR_RETURN(1, &data);
TRUE_OR_RETURN(data == 0);
// nuh_reserved_zero_bit
READ_BITS_OR_RETURN(1, &data);
if (data == 1) {
// Current spec requires ignoring NALU with nuh_reserved_zero_bit == 1.
return kIgnored;
}
READ_BITS_OR_RETURN(6, &nalu->nuh_layer_id);
if (nalu->nuh_layer_id < 0 || nalu->nuh_layer_id > 55) {
return kIgnored;
}
READ_BITS_OR_RETURN(5, &nalu->nal_unit_type);
READ_BITS_OR_RETURN(3, &nalu->nuh_temporal_id_plus1);
TRUE_OR_RETURN(nalu->nuh_temporal_id_plus1 != 0);
if (nalu->nal_unit_type >= H266NALU::kIDRWithRADL &&
nalu->nal_unit_type <= H266NALU::kReservedIRAP11) {
TRUE_OR_RETURN(nalu->nuh_temporal_id_plus1 == 1);
}
DVLOG(4) << "NALU type: " << static_cast<int>(nalu->nal_unit_type)
<< " at: " << reinterpret_cast<const void*>(nalu->data)
<< " size: " << nalu->size;
previous_nalu_range_.clear();
previous_nalu_range_.Add(nalu->data, nalu->data + nalu->size);
return kOk;
}
std::vector<SubsampleEntry> H266NaluParser::GetCurrentSubsamples() {
DCHECK_EQ(previous_nalu_range_.size(), 1u)
<< "This should only be called after a "
"successful call to AdvanceToNextNalu()";
auto intersection = encrypted_ranges_.IntersectionWith(previous_nalu_range_);
return EncryptedRangesToSubsampleEntry(
previous_nalu_range_.start(0), previous_nalu_range_.end(0), intersection);
}
} // namespace media