1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
media / parsers / vp9_parser.cc [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This file contains an implementation of a VP9 bitstream parser.
//
// VERBOSE level:
// 1 something wrong in bitstream
// 2 parsing steps
// 3 parsed values (selected)
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/parsers/vp9_parser.h"
#include <algorithm>
#include "base/containers/circular_deque.h"
#include "base/containers/span.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/numerics/byte_conversions.h"
#include "base/numerics/safe_conversions.h"
#include "media/parsers/vp9_compressed_header_parser.h"
#include "media/parsers/vp9_uncompressed_header_parser.h"
namespace media {
namespace {
// Coefficients extracted verbatim from "VP9 Bitstream & Decoding Process
// Specification" Version 0.6, Sec 8.6.1 Dequantization functions, see:
// https://www.webmproject.org/vp9/#draft-vp9-bitstream-and-decoding-process-specification
constexpr size_t kQIndexRange = 256;
// clang-format off
// libva is the only user of high bit depth VP9 formats and only supports
// 10 bits per component, see https://github.com/01org/libva/issues/137.
// TODO(mcasas): Add the 12 bit versions of these tables.
const int16_t kDcQLookup[][kQIndexRange] = {
{
4, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16,
17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 26,
27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37,
38, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47,
48, 48, 49, 50, 51, 52, 53, 53, 54, 55, 56, 57,
57, 58, 59, 60, 61, 62, 62, 63, 64, 65, 66, 66,
67, 68, 69, 70, 70, 71, 72, 73, 74, 74, 75, 76,
77, 78, 78, 79, 80, 81, 81, 82, 83, 84, 85, 85,
87, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104,
105, 107, 108, 110, 111, 113, 114, 116, 117, 118, 120, 121,
123, 125, 127, 129, 131, 134, 136, 138, 140, 142, 144, 146,
148, 150, 152, 154, 156, 158, 161, 164, 166, 169, 172, 174,
177, 180, 182, 185, 187, 190, 192, 195, 199, 202, 205, 208,
211, 214, 217, 220, 223, 226, 230, 233, 237, 240, 243, 247,
250, 253, 257, 261, 265, 269, 272, 276, 280, 284, 288, 292,
296, 300, 304, 309, 313, 317, 322, 326, 330, 335, 340, 344,
349, 354, 359, 364, 369, 374, 379, 384, 389, 395, 400, 406,
411, 417, 423, 429, 435, 441, 447, 454, 461, 467, 475, 482,
489, 497, 505, 513, 522, 530, 539, 549, 559, 569, 579, 590,
602, 614, 626, 640, 654, 668, 684, 700, 717, 736, 755, 775,
796, 819, 843, 869, 896, 925, 955, 988, 1022, 1058, 1098, 1139,
1184, 1232, 1282, 1336,
},
{
4, 9, 10, 13, 15, 17, 20, 22, 25, 28, 31, 34,
37, 40, 43, 47, 50, 53, 57, 60, 64, 68, 71, 75,
78, 82, 86, 90, 93, 97, 101, 105, 109, 113, 116, 120,
124, 128, 132, 136, 140, 143, 147, 151, 155, 159, 163, 166,
170, 174, 178, 182, 185, 189, 193, 197, 200, 204, 208, 212,
215, 219, 223, 226, 230, 233, 237, 241, 244, 248, 251, 255,
259, 262, 266, 269, 273, 276, 280, 283, 287, 290, 293, 297,
300, 304, 307, 310, 314, 317, 321, 324, 327, 331, 334, 337,
343, 350, 356, 362, 369, 375, 381, 387, 394, 400, 406, 412,
418, 424, 430, 436, 442, 448, 454, 460, 466, 472, 478, 484,
490, 499, 507, 516, 525, 533, 542, 550, 559, 567, 576, 584,
592, 601, 609, 617, 625, 634, 644, 655, 666, 676, 687, 698,
708, 718, 729, 739, 749, 759, 770, 782, 795, 807, 819, 831,
844, 856, 868, 880, 891, 906, 920, 933, 947, 961, 975, 988,
1001, 1015, 1030, 1045, 1061, 1076, 1090, 1105, 1120, 1137, 1153, 1170,
1186, 1202, 1218, 1236, 1253, 1271, 1288, 1306, 1323, 1342, 1361, 1379,
1398, 1416, 1436, 1456, 1476, 1496, 1516, 1537, 1559, 1580, 1601, 1624,
1647, 1670, 1692, 1717, 1741, 1766, 1791, 1817, 1844, 1871, 1900, 1929,
1958, 1990, 2021, 2054, 2088, 2123, 2159, 2197, 2236, 2276, 2319, 2363,
2410, 2458, 2508, 2561, 2616, 2675, 2737, 2802, 2871, 2944, 3020, 3102,
3188, 3280, 3375, 3478, 3586, 3702, 3823, 3953, 4089, 4236, 4394, 4559,
4737, 4929, 5130, 5347
}
};
const int16_t kAcQLookup[][kQIndexRange] = {
{
4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126,
128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150,
152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185,
188, 191, 194, 197, 200, 203, 207, 211, 215, 219, 223, 227,
231, 235, 239, 243, 247, 251, 255, 260, 265, 270, 275, 280,
285, 290, 295, 300, 305, 311, 317, 323, 329, 335, 341, 347,
353, 359, 366, 373, 380, 387, 394, 401, 408, 416, 424, 432,
440, 448, 456, 465, 474, 483, 492, 501, 510, 520, 530, 540,
550, 560, 571, 582, 593, 604, 615, 627, 639, 651, 663, 676,
689, 702, 715, 729, 743, 757, 771, 786, 801, 816, 832, 848,
864, 881, 898, 915, 933, 951, 969, 988, 1007, 1026, 1046, 1066,
1087, 1108, 1129, 1151, 1173, 1196, 1219, 1243, 1267, 1292, 1317, 1343,
1369, 1396, 1423, 1451, 1479, 1508, 1537, 1567, 1597, 1628, 1660, 1692,
1725, 1759, 1793, 1828,
},
{
4, 9, 11, 13, 16, 18, 21, 24, 27, 30, 33, 37,
40, 44, 48, 51, 55, 59, 63, 67, 71, 75, 79, 83,
88, 92, 96, 100, 105, 109, 114, 118, 122, 127, 131, 136,
140, 145, 149, 154, 158, 163, 168, 172, 177, 181, 186, 190,
195, 199, 204, 208, 213, 217, 222, 226, 231, 235, 240, 244,
249, 253, 258, 262, 267, 271, 275, 280, 284, 289, 293, 297,
302, 306, 311, 315, 319, 324, 328, 332, 337, 341, 345, 349,
354, 358, 362, 367, 371, 375, 379, 384, 388, 392, 396, 401,
409, 417, 425, 433, 441, 449, 458, 466, 474, 482, 490, 498,
506, 514, 523, 531, 539, 547, 555, 563, 571, 579, 588, 596,
604, 616, 628, 640, 652, 664, 676, 688, 700, 713, 725, 737,
749, 761, 773, 785, 797, 809, 825, 841, 857, 873, 889, 905,
922, 938, 954, 970, 986, 1002, 1018, 1038, 1058, 1078, 1098, 1118,
1138, 1158, 1178, 1198, 1218, 1242, 1266, 1290, 1314, 1338, 1362, 1386,
1411, 1435, 1463, 1491, 1519, 1547, 1575, 1603, 1631, 1663, 1695, 1727,
1759, 1791, 1823, 1859, 1895, 1931, 1967, 2003, 2039, 2079, 2119, 2159,
2199, 2239, 2283, 2327, 2371, 2415, 2459, 2507, 2555, 2603, 2651, 2703,
2755, 2807, 2859, 2915, 2971, 3027, 3083, 3143, 3203, 3263, 3327, 3391,
3455, 3523, 3591, 3659, 3731, 3803, 3876, 3952, 4028, 4104, 4184, 4264,
4348, 4432, 4516, 4604, 4692, 4784, 4876, 4972, 5068, 5168, 5268, 5372,
5476, 5584, 5692, 5804, 5916, 6032, 6148, 6268, 6388, 6512, 6640, 6768,
6900, 7036, 7172, 7312
}
};
// clang-format on
static_assert(std::size(kDcQLookup[0]) == std::size(kAcQLookup[0]),
"quantizer lookup arrays of incorrect size");
size_t ClampQ(int64_t q) {
return q < 0 ? 0
: base::checked_cast<size_t>(
std::min(q, static_cast<int64_t>(kQIndexRange - 1)));
}
int ClampLf(int lf) {
constexpr int kMaxLoopFilterLevel = 63;
return std::clamp(lf, 0, kMaxLoopFilterLevel);
}
std::string IncrementIV(std::string_view iv, uint32_t by) {
// What we call the 'IV' value is actually somewhat of a misnomer:
// "IV" = 0xFFFFFFFFFFFFFFFF0000000000000000
// └──actual IV───┘└─block counter┘
//
// We want to 'increment' this structure by incrementing just the block
// counter. We pull out the block counter, convert to native endian,
// increment, convert back to big endian and write it back into the byte
// array. Then we return the byte array as a string.
//
// `by` is usually going to be the number of blocks (aka 16 byte chunks)
// of cipher data.
DCHECK_EQ(iv.size(), 16u);
std::array<uint8_t, 16u> bytes;
base::span(bytes).copy_from(base::as_byte_span(iv).first<16u>());
auto counter_bytes = base::span(bytes).last<8u>();
counter_bytes.copy_from(
base::U64ToBigEndian(base::U64FromBigEndian(counter_bytes) + by));
return std::string(bytes.begin(), bytes.end());
}
// |frame_size|: The size of the current frame; this controls how long we
// loop through the subsamples.
// |current_subsample_index|: An index into the |subsamples| vector, we need
// to have this saved between function calls.
// |extra_clear_bytes|: The previous call may have set this variable to show
// that a subsample mey have already started being parsed
// and that only X bytes of free data are left in it.
// |base_decrypt_config|: Not an output parameter, it is just a raw ptr from a
// unique_ptr.
// |subsamples|: A vector of subsamples.
// |iv|: The initialization vector (128bit number stored as std::string). This
// gets incremented by (cipher_bytes % 16) for each frame, and must be
// preserved across function calls.
std::unique_ptr<DecryptConfig> SplitSubsamples(
uint32_t frame_size,
size_t* current_subsample_index,
size_t* extra_clear_subsample_bytes,
const DecryptConfig* base_decrypt_config,
const std::vector<SubsampleEntry>& subsamples,
std::string* iv) {
// We copy iv so that we can use the starting value in our
// new config while still incrementing IV for the next frame.
std::string frame_dc_iv = *iv;
std::vector<SubsampleEntry> frame_dc_subsamples;
do {
if (*current_subsample_index >= subsamples.size()) {
DVLOG(1) << "Not enough subsamples in the superframe decrypt config";
return nullptr;
}
uint32_t subsample_clear = subsamples[*current_subsample_index].clear_bytes;
uint32_t subsample_cipher =
subsamples[*current_subsample_index].cypher_bytes;
// if clear+cipher bytes would be over the max of uint32_t, we need to
// quit immediately, to prevent malicious overflowing.
if (0xFFFFFFFF - subsample_clear < subsample_cipher) {
DVLOG(1) << "Invalid subsample alignment";
return nullptr;
}
// It's possible that the previous frame didn't use all the clear bytes
// in this subsample, in which case we have to start from midway through
// the clear section.
if (*extra_clear_subsample_bytes) {
subsample_clear = *extra_clear_subsample_bytes;
}
if (subsample_clear > frame_size) {
// Support scenario where clear section is larger than our frame:
// The entire length is clear. If |subsample_clear| is the same length,
// we handle it below.
frame_dc_subsamples.push_back(SubsampleEntry(frame_size, 0));
*extra_clear_subsample_bytes = subsample_clear - frame_size;
frame_size = 0;
} else if (subsample_clear + subsample_cipher > frame_size) {
// Only a clear section can cross over a frame boundary, otherwise
// the frame header for the next frame would be encrypted, which is not
// spec compliant.
DVLOG(1) << "Invalid subsample alignment";
return nullptr;
} else if (subsample_clear + subsample_cipher <= frame_size) {
// In this case a subsample is less than or equal to a whole frame
// This is the most likely case for almost all encrypted media.
// note that |subsample_cipher| can be 0.
frame_dc_subsamples.push_back(
SubsampleEntry(subsample_clear, subsample_cipher));
frame_size -= (subsample_clear + subsample_cipher);
*extra_clear_subsample_bytes = 0;
// IV gets incremented by 1 for every 16 bytes of cypher
*iv = IncrementIV(*iv, subsample_cipher >> 4); // uint32 logical shift.
}
// Don't go to the next subsample if there are more clear bytes.
if (!*extra_clear_subsample_bytes) {
(*current_subsample_index)++;
}
// It is possible for there to be more than one subsample associated
// with a single frame, so we need to try again if there are more bytes
// left unaccounted for in this frame.
} while (frame_size);
return base_decrypt_config->CopyNewSubsamplesIV(frame_dc_subsamples,
frame_dc_iv);
}
bool IsByteNEncrypted(off_t byte,
const std::vector<SubsampleEntry>& subsamples) {
off_t original_byte = byte;
for (const SubsampleEntry& subsample : subsamples) {
if (byte < 0) {
return false;
}
if (static_cast<uint32_t>(byte) < subsample.clear_bytes) {
return false;
}
byte -= subsample.clear_bytes;
if (static_cast<uint32_t>(byte) < subsample.cypher_bytes) {
return true;
}
byte -= subsample.cypher_bytes;
}
DVLOG(3) << "Subsamples do not extend to cover offset " << original_byte;
return false;
}
} // namespace
Vp9FrameHeader::Vp9FrameHeader() = default;
Vp9FrameHeader::Vp9FrameHeader(const Vp9FrameHeader&) = default;
Vp9FrameHeader::Vp9FrameHeader(Vp9FrameHeader&&) = default;
Vp9FrameHeader& Vp9FrameHeader::operator=(const Vp9FrameHeader&) = default;
Vp9FrameHeader& Vp9FrameHeader::operator=(Vp9FrameHeader&&) = default;
Vp9FrameHeader::~Vp9FrameHeader() = default;
bool Vp9FrameHeader::IsKeyframe() const {
// When show_existing_frame is true, the frame header does not precede an
// actual frame to be decoded, so frame_type does not apply (and is not read
// from the stream).
return !show_existing_frame && frame_type == KEYFRAME;
}
bool Vp9FrameHeader::IsIntra() const {
return !show_existing_frame && (frame_type == KEYFRAME || intra_only);
}
VideoColorSpace Vp9FrameHeader::GetColorSpace() const {
VideoColorSpace ret;
ret.range = color_range ? gfx::ColorSpace::RangeID::FULL
: gfx::ColorSpace::RangeID::LIMITED;
switch (color_space) {
case Vp9ColorSpace::RESERVED:
case Vp9ColorSpace::UNKNOWN:
break;
case Vp9ColorSpace::BT_601:
case Vp9ColorSpace::SMPTE_170:
ret.primaries = VideoColorSpace::PrimaryID::SMPTE170M;
ret.transfer = VideoColorSpace::TransferID::SMPTE170M;
ret.matrix = VideoColorSpace::MatrixID::SMPTE170M;
break;
case Vp9ColorSpace::BT_709:
ret.primaries = VideoColorSpace::PrimaryID::BT709;
ret.transfer = VideoColorSpace::TransferID::BT709;
ret.matrix = VideoColorSpace::MatrixID::BT709;
break;
case Vp9ColorSpace::SMPTE_240:
ret.primaries = VideoColorSpace::PrimaryID::SMPTE240M;
ret.transfer = VideoColorSpace::TransferID::SMPTE240M;
ret.matrix = VideoColorSpace::MatrixID::SMPTE240M;
break;
case Vp9ColorSpace::BT_2020:
ret.primaries = VideoColorSpace::PrimaryID::BT2020;
ret.transfer = VideoColorSpace::TransferID::BT2020_10;
ret.matrix = VideoColorSpace::MatrixID::BT2020_NCL;
break;
case Vp9ColorSpace::SRGB:
ret.primaries = VideoColorSpace::PrimaryID::BT709;
ret.transfer = VideoColorSpace::TransferID::IEC61966_2_1;
ret.matrix = VideoColorSpace::MatrixID::BT709;
break;
}
return ret;
}
Vp9Parser::FrameInfo::FrameInfo() = default;
Vp9Parser::FrameInfo::FrameInfo(const uint8_t* ptr, off_t size)
: ptr(ptr), size(size) {}
Vp9Parser::FrameInfo::FrameInfo(FrameInfo&& other) = default;
Vp9Parser::FrameInfo& Vp9Parser::FrameInfo::operator=(FrameInfo&& other) =
default;
Vp9Parser::FrameInfo::~FrameInfo() = default;
bool Vp9FrameContext::IsValid() const {
// probs should be in [1, 255] range.
static_assert(sizeof(Vp9Prob) == 1,
"following checks assuming Vp9Prob is single byte");
if (memchr(tx_probs_8x8, 0, sizeof(tx_probs_8x8))) {
return false;
}
if (memchr(tx_probs_16x16, 0, sizeof(tx_probs_16x16))) {
return false;
}
if (memchr(tx_probs_32x32, 0, sizeof(tx_probs_32x32))) {
return false;
}
for (auto& a : coef_probs) {
for (auto& ai : a) {
for (auto& aj : ai) {
for (auto& ak : aj) {
int max_l = (+ak == +aj[0]) ? 3 : 6;
for (int l = 0; l < max_l; l++) {
for (auto& x : ak[l]) {
if (x == 0) {
return false;
}
}
}
}
}
}
}
if (memchr(skip_prob, 0, sizeof(skip_prob))) {
return false;
}
if (memchr(inter_mode_probs, 0, sizeof(inter_mode_probs))) {
return false;
}
if (memchr(interp_filter_probs, 0, sizeof(interp_filter_probs))) {
return false;
}
if (memchr(is_inter_prob, 0, sizeof(is_inter_prob))) {
return false;
}
if (memchr(comp_mode_prob, 0, sizeof(comp_mode_prob))) {
return false;
}
if (memchr(single_ref_prob, 0, sizeof(single_ref_prob))) {
return false;
}
if (memchr(comp_ref_prob, 0, sizeof(comp_ref_prob))) {
return false;
}
if (memchr(y_mode_probs, 0, sizeof(y_mode_probs))) {
return false;
}
if (memchr(uv_mode_probs, 0, sizeof(uv_mode_probs))) {
return false;
}
if (memchr(partition_probs, 0, sizeof(partition_probs))) {
return false;
}
if (memchr(mv_joint_probs, 0, sizeof(mv_joint_probs))) {
return false;
}
if (memchr(mv_sign_prob, 0, sizeof(mv_sign_prob))) {
return false;
}
if (memchr(mv_class_probs, 0, sizeof(mv_class_probs))) {
return false;
}
if (memchr(mv_class0_bit_prob, 0, sizeof(mv_class0_bit_prob))) {
return false;
}
if (memchr(mv_bits_prob, 0, sizeof(mv_bits_prob))) {
return false;
}
if (memchr(mv_class0_fr_probs, 0, sizeof(mv_class0_fr_probs))) {
return false;
}
if (memchr(mv_fr_probs, 0, sizeof(mv_fr_probs))) {
return false;
}
if (memchr(mv_class0_hp_prob, 0, sizeof(mv_class0_hp_prob))) {
return false;
}
if (memchr(mv_hp_prob, 0, sizeof(mv_hp_prob))) {
return false;
}
return true;
}
void Vp9Parser::Context::Reset() {
memset(&segmentation_, 0, sizeof(segmentation_));
memset(&loop_filter_, 0, sizeof(loop_filter_));
memset(&ref_slots_, 0, sizeof(ref_slots_));
}
const Vp9Parser::ReferenceSlot& Vp9Parser::Context::GetRefSlot(
size_t ref_type) const {
DCHECK_LT(ref_type, std::size(ref_slots_));
return ref_slots_[ref_type];
}
void Vp9Parser::Context::UpdateRefSlot(
size_t ref_type,
const Vp9Parser::ReferenceSlot& ref_slot) {
DCHECK_LT(ref_type, std::size(ref_slots_));
ref_slots_[ref_type] = ref_slot;
}
Vp9Parser::Vp9Parser(bool parsing_compressed_header)
: parsing_compressed_header_(parsing_compressed_header) {
Reset();
}
Vp9Parser::~Vp9Parser() = default;
void Vp9Parser::SetStream(const uint8_t* stream,
off_t stream_size,
const std::vector<uint32_t>& spatial_layer_frame_size,
std::unique_ptr<DecryptConfig> stream_config) {
DCHECK(stream);
stream_ = stream;
bytes_left_ = stream_size;
frames_.clear();
spatial_layer_frame_size_ = spatial_layer_frame_size;
stream_decrypt_config_ = std::move(stream_config);
}
void Vp9Parser::SetStream(const uint8_t* stream,
off_t stream_size,
std::unique_ptr<DecryptConfig> stream_config) {
SetStream(stream, stream_size, {}, std::move(stream_config));
}
void Vp9Parser::Reset() {
stream_ = nullptr;
bytes_left_ = 0;
frames_.clear();
spatial_layer_frame_size_.clear();
curr_frame_info_.Reset();
context_.Reset();
}
bool Vp9Parser::ParseUncompressedHeader(const FrameInfo& frame_info,
Vp9FrameHeader* fhdr,
Result* result,
Vp9Parser::Context* context) {
memset(&curr_frame_header_, 0, sizeof(curr_frame_header_));
*result = kInvalidStream;
Vp9UncompressedHeaderParser uncompressed_parser(context);
if (!uncompressed_parser.Parse(frame_info.ptr, frame_info.size,
&curr_frame_header_)) {
*result = kInvalidStream;
return true;
}
if (curr_frame_header_.header_size_in_bytes == 0) {
// Verify padding bits are zero.
for (off_t i = curr_frame_header_.uncompressed_header_size;
i < frame_info.size; i++) {
if (frame_info.ptr[i] != 0) {
DVLOG(1) << "Padding bits are not zeros.";
*result = kInvalidStream;
return true;
}
}
*fhdr = curr_frame_header_;
*result = kOk;
return true;
}
if (curr_frame_header_.uncompressed_header_size +
curr_frame_header_.header_size_in_bytes >
base::checked_cast<size_t>(frame_info.size)) {
DVLOG(1) << "header_size_in_bytes="
<< curr_frame_header_.header_size_in_bytes
<< " is larger than bytes left in buffer: "
<< frame_info.size - curr_frame_header_.uncompressed_header_size;
*result = kInvalidStream;
return true;
}
return false;
}
bool Vp9Parser::ParseCompressedHeader(const FrameInfo& frame_info,
Result* result) {
*result = kInvalidStream;
Vp9CompressedHeaderParser compressed_parser;
bool parse_success;
parse_success = compressed_parser.ParseNoContext(
frame_info.ptr + curr_frame_header_.uncompressed_header_size,
curr_frame_header_.header_size_in_bytes, &curr_frame_header_);
if (!parse_success) {
*result = kInvalidStream;
return true;
}
return false;
}
Vp9Parser::Result Vp9Parser::ParseNextFrame(
Vp9FrameHeader* fhdr,
gfx::Size* allocate_size,
std::unique_ptr<DecryptConfig>* frame_decrypt_config) {
DCHECK(fhdr);
DCHECK(allocate_size);
DVLOG(2) << "ParseNextFrame";
FrameInfo frame_info;
Result result;
// If |curr_frame_info_| is valid, uncompressed header was parsed into
// |curr_frame_header_| and we are awaiting context update to proceed with
// compressed header parsing.
if (curr_frame_info_.IsValid()) {
DCHECK(parsing_compressed_header_);
frame_info = std::move(curr_frame_info_);
curr_frame_info_.Reset();
} else {
if (frames_.empty()) {
// No frames to be decoded, if there is no more stream, request more.
if (!stream_) {
return kEOStream;
}
// New stream to be parsed, parse it and fill frames_.
if (!spatial_layer_frame_size_.empty()) {
// If it is SVC stream, we have to parse the stream with
// |spatial_layer_frame_size_|.
frames_ = ParseSVCFrame();
} else {
frames_ = ParseSuperframe();
}
if (frames_.empty()) {
DVLOG(1) << "Failed parsing superframes/SVC frame";
return kInvalidStream;
}
}
frame_info = std::move(frames_.front());
frames_.pop_front();
if (frame_decrypt_config) {
if (frame_info.decrypt_config) {
*frame_decrypt_config = frame_info.decrypt_config->Clone();
} else {
*frame_decrypt_config = nullptr;
}
}
if (ParseUncompressedHeader(frame_info, fhdr, &result, &context_)) {
return result;
}
}
if (parsing_compressed_header_) {
if (ParseCompressedHeader(frame_info, &result)) {
DCHECK(curr_frame_info_.IsValid());
return result;
}
}
if (!SetupSegmentationDequant()) {
return kInvalidStream;
}
SetupLoopFilter();
UpdateSlots(&context_);
*fhdr = curr_frame_header_;
// show_frame must be true for the last frame, otherwise false in SVC frame.
if (!spatial_layer_frame_size_.empty()) {
fhdr->show_frame = frames_.empty();
}
if (frame_info.allocate_size.IsEmpty()) {
allocate_size->SetSize(fhdr->frame_width, fhdr->frame_height);
} else {
*allocate_size = frame_info.allocate_size;
}
return kOk;
}
std::unique_ptr<DecryptConfig> Vp9Parser::NextFrameDecryptContextForTesting() {
if (frames_.empty()) {
// No frames to be decoded, if there is no more stream, request more.
if (!stream_) {
return nullptr;
}
// New stream to be parsed, parse it and fill frames_.
frames_ = ParseSuperframe();
if (frames_.empty()) {
return nullptr;
}
}
FrameInfo frame_info = std::move(frames_.front());
frames_.pop_front();
return std::move(frame_info.decrypt_config);
}
std::string Vp9Parser::IncrementIVForTesting(std::string_view iv, uint32_t by) {
return IncrementIV(iv, by);
}
// static
bool Vp9Parser::IsSuperframe(const uint8_t* stream,
off_t stream_size,
const DecryptConfig* decrypt_config) {
if (!stream || stream_size < 1) {
return false;
}
// The marker byte might be encrypted, in which case we should treat
// the stream as a single frame.
off_t marker_offset = stream_size - 1;
if (decrypt_config &&
IsByteNEncrypted(marker_offset, decrypt_config->subsamples())) {
return false;
}
// If this is a superframe, the last byte in the stream will contain the
// superframe marker. If not, the whole buffer contains a single frame.
uint8_t marker = *(stream + marker_offset);
return ((marker & 0xe0) == 0xc0);
}
// static
base::circular_deque<Vp9Parser::FrameInfo> Vp9Parser::ExtractFrames(
const uint8_t* stream,
off_t stream_size,
const DecryptConfig* decrypt_config) {
base::circular_deque<FrameInfo> frames;
off_t bytes_left = stream_size;
if (!stream || bytes_left < 1) {
return frames;
}
if (!IsSuperframe(stream, bytes_left, decrypt_config)) {
frames.push_back(FrameInfo(stream, bytes_left));
if (decrypt_config) {
frames[0].decrypt_config = decrypt_config->Clone();
}
return frames;
}
off_t marker_offset = stream_size - 1;
uint8_t marker = *(stream + marker_offset);
DVLOG(1) << "Parsing a superframe";
// The bytes immediately before the superframe marker constitute superframe
// index, which stores information about sizes of each frame in it.
// Calculate its size and set index_ptr to the beginning of it.
size_t num_frames = (marker & 0x7) + 1;
size_t mag = ((marker >> 3) & 0x3) + 1;
off_t index_size = 2 + mag * num_frames;
if (bytes_left < index_size) {
return base::circular_deque<FrameInfo>();
}
const uint8_t* index_ptr = stream + bytes_left - index_size;
if (marker != *index_ptr) {
return base::circular_deque<FrameInfo>();
}
++index_ptr;
bytes_left -= index_size;
// Parse frame information contained in the index and add a pointer to and
// size of each frame to frames.
// Use this to calculate the per-frame IV value.
std::string iv;
std::vector<SubsampleEntry> subsamples;
size_t current_subsample = 0;
size_t extra_clear_subsample_bytes = 0;
if (decrypt_config) {
iv = decrypt_config->iv();
subsamples = decrypt_config->subsamples();
}
for (size_t i = 0; i < num_frames; ++i) {
uint32_t size = 0;
for (size_t j = 0; j < mag; ++j) {
size |= *index_ptr << (j * 8);
++index_ptr;
}
if (!base::IsValueInRangeForNumericType<off_t>(size) ||
static_cast<off_t>(size) > bytes_left) {
DVLOG(1) << "Not enough data in the buffer for frame " << i;
frames.clear();
return frames;
}
FrameInfo frame = FrameInfo(stream, size);
if (subsamples.size()) {
std::unique_ptr<DecryptConfig> frame_dc = SplitSubsamples(
size, ¤t_subsample, &extra_clear_subsample_bytes,
decrypt_config, subsamples, &iv);
if (!frame_dc) {
DVLOG(1) << "Failed to calculate decrypt config for frame " << i;
frames.clear();
return frames;
}
frame.decrypt_config = std::move(frame_dc);
}
frames.push_back(std::move(frame));
stream += size;
bytes_left -= size;
DVLOG(1) << "Frame " << i << ", size: " << size;
}
return frames;
}
// Annex B Superframes
base::circular_deque<Vp9Parser::FrameInfo> Vp9Parser::ParseSuperframe() {
const uint8_t* stream = stream_;
off_t bytes_left = bytes_left_;
// Make sure we don't parse stream_ more than once.
stream_ = nullptr;
bytes_left_ = 0;
return ExtractFrames(stream, bytes_left, stream_decrypt_config_.get());
}
base::circular_deque<Vp9Parser::FrameInfo> Vp9Parser::ParseSVCFrame() {
if (parsing_compressed_header_) {
LOG(ERROR) << "Vp9Parser doesn't support parsing SVC stream when "
<< "a compressed header needs to be parsed";
return {};
}
if (stream_decrypt_config_) {
LOG(ERROR) << "Encrypted frame with SVC stream is not supported";
return {};
}
const uint8_t* stream = stream_;
off_t bytes_left = bytes_left_;
// Make sure we don't parse stream_ more than once.
stream_ = nullptr;
bytes_left_ = 0;
base::circular_deque<FrameInfo> frames;
for (size_t i = 0; i < spatial_layer_frame_size_.size(); i++) {
const uint32_t size = spatial_layer_frame_size_[i];
if (!base::IsValueInRangeForNumericType<off_t>(size) ||
static_cast<off_t>(size) > bytes_left) {
DVLOG(1) << "Not enough data in the buffer for frame " << i;
return {};
}
frames.emplace_back(stream, size);
stream += size;
bytes_left -= size;
DVLOG(1) << "Frame " << i << ", size: " << size;
}
DCHECK(!frames.empty());
gfx::Size max_frame_size;
// Context is not copyable because it has base::WeakPtrFactory. The weak
// pointer is necessary to update context for compressed header. To parse
// uncompressed header, |segmentation_|, |loop_filter| and |ref_slots_| are
// sufficient. Copy the variables manually here.
Context tmp_context;
tmp_context.segmentation_ = context_.segmentation_;
tmp_context.loop_filter_ = context_.loop_filter_;
memcpy(tmp_context.ref_slots_, context_.ref_slots_,
sizeof(context_.ref_slots_));
for (const auto& frame_info : frames) {
// |curr_frame_header_| is used safely because it is reset every
// ParseUncompressedHeader().
Vp9FrameHeader dummy_fhdr;
Result result;
if (ParseUncompressedHeader(frame_info, &dummy_fhdr, &result,
&tmp_context) &&
result != kOk) {
return {};
}
UpdateSlots(&tmp_context);
max_frame_size.SetToMax(gfx::Size(curr_frame_header_.frame_width,
curr_frame_header_.frame_height));
}
for (auto& frame_info : frames) {
frame_info.allocate_size = max_frame_size;
}
return frames;
}
// 8.6.1 Dequantization functions
int64_t Vp9Parser::GetQIndex(const Vp9QuantizationParams& quant,
size_t segid) const {
const Vp9SegmentationParams& segmentation = context_.segmentation();
if (segmentation.FeatureEnabled(segid,
Vp9SegmentationParams::SEG_LVL_ALT_Q)) {
int16_t feature_data =
segmentation.FeatureData(segid, Vp9SegmentationParams::SEG_LVL_ALT_Q);
int64_t q_index = segmentation.abs_or_delta_update
? feature_data
: quant.base_q_idx + feature_data;
return ClampQ(q_index);
}
return quant.base_q_idx;
}
// 8.6.1 Dequantization functions
bool Vp9Parser::SetupSegmentationDequant() {
const Vp9QuantizationParams& quant = curr_frame_header_.quant_params;
Vp9SegmentationParams& segmentation = context_.segmentation_;
if (curr_frame_header_.bit_depth > 10) {
DLOG(ERROR) << "bit_depth > 10 is not supported yet, kDcQLookup and "
"kAcQLookup need to be extended";
return false;
}
const size_t bit_depth_index = (curr_frame_header_.bit_depth == 8) ? 0 : 1;
if (segmentation.enabled) {
for (size_t i = 0; i < Vp9SegmentationParams::kNumSegments; ++i) {
const int64_t q_index = GetQIndex(quant, i);
segmentation.y_dequant[i][0] =
kDcQLookup[bit_depth_index][ClampQ(q_index + quant.delta_q_y_dc)];
segmentation.y_dequant[i][1] =
kAcQLookup[bit_depth_index][ClampQ(q_index)];
segmentation.uv_dequant[i][0] =
kDcQLookup[bit_depth_index][ClampQ(q_index + quant.delta_q_uv_dc)];
segmentation.uv_dequant[i][1] =
kAcQLookup[bit_depth_index][ClampQ(q_index + quant.delta_q_uv_ac)];
}
} else {
const int64_t q_index = quant.base_q_idx;
segmentation.y_dequant[0][0] =
kDcQLookup[bit_depth_index][ClampQ(q_index + quant.delta_q_y_dc)];
segmentation.y_dequant[0][1] = kAcQLookup[bit_depth_index][ClampQ(q_index)];
segmentation.uv_dequant[0][0] =
kDcQLookup[bit_depth_index][ClampQ(q_index + quant.delta_q_uv_dc)];
segmentation.uv_dequant[0][1] =
kAcQLookup[bit_depth_index][ClampQ(q_index + quant.delta_q_uv_ac)];
}
return true;
}
// 8.8.1 Loop filter frame init process
void Vp9Parser::SetupLoopFilter() {
Vp9LoopFilterParams& loop_filter = context_.loop_filter_;
if (!loop_filter.level) {
return;
}
int scale = loop_filter.level < 32 ? 1 : 2;
for (size_t i = 0; i < Vp9SegmentationParams::kNumSegments; ++i) {
int level = loop_filter.level;
const Vp9SegmentationParams& segmentation = context_.segmentation();
if (segmentation.FeatureEnabled(i, Vp9SegmentationParams::SEG_LVL_ALT_LF)) {
int feature_data =
segmentation.FeatureData(i, Vp9SegmentationParams::SEG_LVL_ALT_LF);
level = ClampLf(segmentation.abs_or_delta_update ? feature_data
: level + feature_data);
}
if (!loop_filter.delta_enabled) {
memset(loop_filter.lvl[i], level, sizeof(loop_filter.lvl[i]));
} else {
loop_filter.lvl[i][Vp9RefType::VP9_FRAME_INTRA][0] = ClampLf(
level + loop_filter.ref_deltas[Vp9RefType::VP9_FRAME_INTRA] * scale);
loop_filter.lvl[i][Vp9RefType::VP9_FRAME_INTRA][1] = 0;
for (size_t type = Vp9RefType::VP9_FRAME_LAST;
type < Vp9RefType::VP9_FRAME_MAX; ++type) {
for (size_t mode = 0; mode < Vp9LoopFilterParams::kNumModeDeltas;
++mode) {
loop_filter.lvl[i][type][mode] =
ClampLf(level + loop_filter.ref_deltas[type] * scale +
loop_filter.mode_deltas[mode] * scale);
}
}
}
}
}
void Vp9Parser::UpdateSlots(Vp9Parser::Context* context) {
// 8.10 Reference frame update process
for (size_t i = 0; i < kVp9NumRefFrames; i++) {
if (curr_frame_header_.RefreshFlag(i)) {
ReferenceSlot ref_slot;
ref_slot.initialized = true;
ref_slot.frame_width = curr_frame_header_.frame_width;
ref_slot.frame_height = curr_frame_header_.frame_height;
ref_slot.subsampling_x = curr_frame_header_.subsampling_x;
ref_slot.subsampling_y = curr_frame_header_.subsampling_y;
ref_slot.bit_depth = curr_frame_header_.bit_depth;
ref_slot.profile = curr_frame_header_.profile;
ref_slot.color_space = curr_frame_header_.color_space;
context->UpdateRefSlot(i, ref_slot);
}
}
}
} // namespace media