1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
media / renderers / audio_renderer_impl.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/renderers/audio_renderer_impl.h"
#include <math.h>
#include <stddef.h>
#include <memory>
#include <utility>
#include "base/command_line.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/logging.h"
#include "base/metrics/histogram_macros.h"
#include "base/power_monitor/power_monitor.h"
#include "base/ranges/algorithm.h"
#include "base/task/bind_post_task.h"
#include "base/task/sequenced_task_runner.h"
#include "base/time/default_tick_clock.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "media/audio/null_audio_sink.h"
#include "media/base/audio_buffer.h"
#include "media/base/audio_buffer_converter.h"
#include "media/base/audio_latency.h"
#include "media/base/audio_parameters.h"
#include "media/base/channel_mixing_matrix.h"
#include "media/base/demuxer_stream.h"
#include "media/base/media_client.h"
#include "media/base/media_log.h"
#include "media/base/media_switches.h"
#include "media/base/media_util.h"
#include "media/base/renderer_client.h"
#include "media/base/timestamp_constants.h"
#include "media/filters/audio_clock.h"
#include "media/filters/decrypting_demuxer_stream.h"
namespace media {
AudioRendererImpl::AudioRendererImpl(
const scoped_refptr<base::SequencedTaskRunner>& task_runner,
AudioRendererSink* sink,
const CreateAudioDecodersCB& create_audio_decoders_cb,
MediaLog* media_log,
MediaPlayerLoggingID media_player_id,
SpeechRecognitionClient* speech_recognition_client)
: task_runner_(task_runner),
expecting_config_changes_(false),
sink_(sink),
media_log_(media_log),
player_id_(media_player_id),
client_(nullptr),
tick_clock_(base::DefaultTickClock::GetInstance()),
last_audio_memory_usage_(0),
last_decoded_sample_rate_(0),
last_decoded_channel_layout_(CHANNEL_LAYOUT_NONE),
is_encrypted_(false),
last_decoded_channels_(0),
volume_(1.0f), // Default unmuted.
playback_rate_(0.0),
state_(kUninitialized),
create_audio_decoders_cb_(create_audio_decoders_cb),
buffering_state_(BUFFERING_HAVE_NOTHING),
rendering_(false),
sink_playing_(false),
pending_read_(false),
received_end_of_stream_(false),
rendered_end_of_stream_(false),
is_suspending_(false),
#if BUILDFLAG(IS_ANDROID)
is_passthrough_(false) {
#else
is_passthrough_(false),
speech_recognition_client_(speech_recognition_client) {
#endif
DCHECK(create_audio_decoders_cb_);
// PowerObserver's must be added and removed from the same thread, but we
// won't remove the observer until we're destructed on |task_runner_| so we
// must post it here if we're on the wrong thread.
if (task_runner_->RunsTasksInCurrentSequence()) {
base::PowerMonitor::GetInstance()->GetInstance()->AddPowerSuspendObserver(
this);
} else {
// Safe to post this without a WeakPtr because this class must be destructed
// on the same thread and construction has not completed yet.
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
base::IgnoreResult(&base::PowerMonitor::AddPowerSuspendObserver),
base::Unretained(base::PowerMonitor::GetInstance()), this));
}
// Do not add anything below this line since the above actions are only safe
// as the last lines of the constructor.
}
AudioRendererImpl::~AudioRendererImpl() {
DVLOG(1) << __func__;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
base::PowerMonitor::GetInstance()->GetInstance()->RemovePowerSuspendObserver(
this);
// If Render() is in progress, this call will wait for Render() to finish.
// After this call, the |sink_| will not call back into |this| anymore.
sink_->Stop();
if (null_sink_)
null_sink_->Stop();
if (init_cb_)
FinishInitialization(PIPELINE_ERROR_ABORT);
}
void AudioRendererImpl::StartTicking() {
DVLOG(1) << __func__;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
base::AutoLock auto_lock(lock_);
DCHECK(!rendering_);
rendering_ = true;
// Wait for an eventual call to SetPlaybackRate() to start rendering.
if (playback_rate_ == 0) {
DCHECK(!sink_playing_);
return;
}
StartRendering_Locked();
}
void AudioRendererImpl::StartRendering_Locked() {
DVLOG(1) << __func__;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
DCHECK_EQ(state_, kPlaying);
DCHECK(!sink_playing_);
DCHECK_NE(playback_rate_, 0.0);
lock_.AssertAcquired();
sink_playing_ = true;
was_unmuted_ = was_unmuted_ || volume_ != 0;
base::AutoUnlock auto_unlock(lock_);
if (volume_ || !null_sink_)
sink_->Play();
else
null_sink_->Play();
}
void AudioRendererImpl::StopTicking() {
DVLOG(1) << __func__;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
base::AutoLock auto_lock(lock_);
DCHECK(rendering_);
rendering_ = false;
// Rendering should have already been stopped with a zero playback rate.
if (playback_rate_ == 0) {
DCHECK(!sink_playing_);
return;
}
StopRendering_Locked();
}
void AudioRendererImpl::StopRendering_Locked() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
DCHECK_EQ(state_, kPlaying);
DCHECK(sink_playing_);
lock_.AssertAcquired();
sink_playing_ = false;
base::AutoUnlock auto_unlock(lock_);
if (volume_ || !null_sink_)
sink_->Pause();
else
null_sink_->Pause();
stop_rendering_time_ = last_render_time_;
}
void AudioRendererImpl::SetMediaTime(base::TimeDelta time) {
DVLOG(1) << __func__ << "(" << time << ")";
DCHECK(task_runner_->RunsTasksInCurrentSequence());
base::AutoLock auto_lock(lock_);
DCHECK(!rendering_);
DCHECK_EQ(state_, kFlushed);
start_timestamp_ = time;
ended_timestamp_ = kInfiniteDuration;
last_render_time_ = stop_rendering_time_ = base::TimeTicks();
first_packet_timestamp_ = kNoTimestamp;
audio_clock_ =
std::make_unique<AudioClock>(time, audio_parameters_.sample_rate());
}
base::TimeDelta AudioRendererImpl::CurrentMediaTime() {
base::AutoLock auto_lock(lock_);
// Return the current time based on the known extents of the rendered audio
// data plus an estimate based on the last time those values were calculated.
base::TimeDelta current_media_time = audio_clock_->front_timestamp();
if (!last_render_time_.is_null()) {
current_media_time +=
(tick_clock_->NowTicks() - last_render_time_) * playback_rate_;
if (current_media_time > audio_clock_->back_timestamp())
current_media_time = audio_clock_->back_timestamp();
}
return current_media_time;
}
bool AudioRendererImpl::GetWallClockTimes(
const std::vector<base::TimeDelta>& media_timestamps,
std::vector<base::TimeTicks>* wall_clock_times) {
base::AutoLock auto_lock(lock_);
DCHECK(wall_clock_times->empty());
// When playback is paused (rate is zero), assume a rate of 1.0.
const double playback_rate = playback_rate_ ? playback_rate_ : 1.0;
const bool is_time_moving = sink_playing_ && playback_rate_ &&
!last_render_time_.is_null() &&
stop_rendering_time_.is_null() && !is_suspending_;
// Pre-compute the time until playback of the audio buffer extents, since
// these values are frequently used below.
const base::TimeDelta time_until_front =
audio_clock_->TimeUntilPlayback(audio_clock_->front_timestamp());
const base::TimeDelta time_until_back =
audio_clock_->TimeUntilPlayback(audio_clock_->back_timestamp());
if (media_timestamps.empty()) {
// Return the current media time as a wall clock time while accounting for
// frames which may be in the process of play out.
wall_clock_times->push_back(std::min(
std::max(tick_clock_->NowTicks(), last_render_time_ + time_until_front),
last_render_time_ + time_until_back));
return is_time_moving;
}
wall_clock_times->reserve(media_timestamps.size());
for (const auto& media_timestamp : media_timestamps) {
// When time was or is moving and the requested media timestamp is within
// range of played out audio, we can provide an exact conversion.
if (!last_render_time_.is_null() &&
media_timestamp >= audio_clock_->front_timestamp() &&
media_timestamp <= audio_clock_->back_timestamp()) {
wall_clock_times->push_back(
last_render_time_ + audio_clock_->TimeUntilPlayback(media_timestamp));
continue;
}
base::TimeDelta base_timestamp, time_until_playback;
if (media_timestamp < audio_clock_->front_timestamp()) {
base_timestamp = audio_clock_->front_timestamp();
time_until_playback = time_until_front;
} else {
base_timestamp = audio_clock_->back_timestamp();
time_until_playback = time_until_back;
}
// In practice, most calls will be estimates given the relatively small
// window in which clients can get the actual time.
wall_clock_times->push_back(last_render_time_ + time_until_playback +
(media_timestamp - base_timestamp) /
playback_rate);
}
return is_time_moving;
}
TimeSource* AudioRendererImpl::GetTimeSource() {
return this;
}
void AudioRendererImpl::Flush(base::OnceClosure callback) {
DVLOG(1) << __func__;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media", "AudioRendererImpl::Flush",
TRACE_ID_LOCAL(this));
// Flush |sink_| now. |sink_| must only be accessed on |task_runner_| and not
// be called under |lock_|.
DCHECK(!sink_playing_);
if (volume_ || !null_sink_)
sink_->Flush();
else
null_sink_->Flush();
base::AutoLock auto_lock(lock_);
DCHECK_EQ(state_, kPlaying);
DCHECK(!flush_cb_);
flush_cb_ = std::move(callback);
ChangeState_Locked(kFlushing);
if (pending_read_)
return;
ChangeState_Locked(kFlushed);
DoFlush_Locked();
}
void AudioRendererImpl::DoFlush_Locked() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
lock_.AssertAcquired();
DCHECK(!pending_read_);
DCHECK_EQ(state_, kFlushed);
ended_timestamp_ = kInfiniteDuration;
audio_decoder_stream_->Reset(base::BindOnce(
&AudioRendererImpl::ResetDecoderDone, weak_factory_.GetWeakPtr()));
}
void AudioRendererImpl::ResetDecoderDone() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
{
base::AutoLock auto_lock(lock_);
DCHECK_EQ(state_, kFlushed);
DCHECK(flush_cb_);
received_end_of_stream_ = false;
rendered_end_of_stream_ = false;
// Flush() may have been called while underflowed/not fully buffered.
if (buffering_state_ != BUFFERING_HAVE_NOTHING)
SetBufferingState_Locked(BUFFERING_HAVE_NOTHING);
if (buffer_converter_)
buffer_converter_->Reset();
algorithm_->FlushBuffers();
}
FinishFlush();
}
void AudioRendererImpl::StartPlaying() {
DVLOG(1) << __func__;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
base::AutoLock auto_lock(lock_);
DCHECK(!sink_playing_);
DCHECK_EQ(state_, kFlushed);
DCHECK_EQ(buffering_state_, BUFFERING_HAVE_NOTHING);
DCHECK(!pending_read_) << "Pending read must complete before seeking";
ChangeState_Locked(kPlaying);
AttemptRead_Locked();
}
void AudioRendererImpl::Initialize(DemuxerStream* stream,
CdmContext* cdm_context,
RendererClient* client,
PipelineStatusCallback init_cb) {
DVLOG(1) << __func__;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
DCHECK(client);
DCHECK(stream);
DCHECK_EQ(stream->type(), DemuxerStream::AUDIO);
DCHECK(init_cb);
DCHECK(state_ == kUninitialized || state_ == kFlushed);
DCHECK(sink_);
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media", "AudioRendererImpl::Initialize",
TRACE_ID_LOCAL(this));
// If we are re-initializing playback (e.g. switching media tracks), stop the
// sink first.
if (state_ == kFlushed) {
num_absurd_delay_warnings_ = 0;
sink_->Stop();
if (null_sink_)
null_sink_->Stop();
}
state_ = kInitializing;
demuxer_stream_ = stream;
client_ = client;
// Always post |init_cb_| because |this| could be destroyed if initialization
// failed.
init_cb_ = base::BindPostTaskToCurrentDefault(std::move(init_cb));
// Retrieve hardware device parameters asynchronously so we don't block the
// media thread on synchronous IPC.
sink_->GetOutputDeviceInfoAsync(
base::BindOnce(&AudioRendererImpl::OnDeviceInfoReceived,
weak_factory_.GetWeakPtr(), demuxer_stream_, cdm_context));
#if !BUILDFLAG(IS_ANDROID)
if (speech_recognition_client_) {
speech_recognition_client_->SetOnReadyCallback(
base::BindPostTaskToCurrentDefault(
base::BindOnce(&AudioRendererImpl::EnableSpeechRecognition,
weak_factory_.GetWeakPtr())));
}
#endif
}
void AudioRendererImpl::OnDeviceInfoReceived(
DemuxerStream* stream,
CdmContext* cdm_context,
OutputDeviceInfo output_device_info) {
DVLOG(1) << __func__;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
DCHECK(client_);
DCHECK(stream);
DCHECK_EQ(stream->type(), DemuxerStream::AUDIO);
DCHECK(init_cb_);
DCHECK_EQ(state_, kInitializing);
// Fall-back to a fake audio sink if the audio device can't be setup; this
// allows video playback in cases where there is no audio hardware.
//
// TODO(dalecurtis): We could disable the audio track here too.
UMA_HISTOGRAM_ENUMERATION("Media.AudioRendererImpl.SinkStatus",
output_device_info.device_status(),
OUTPUT_DEVICE_STATUS_MAX + 1);
if (output_device_info.device_status() != OUTPUT_DEVICE_STATUS_OK) {
MEDIA_LOG(ERROR, media_log_)
<< "Output device error, falling back to null sink. device_status="
<< output_device_info.device_status();
sink_ = new NullAudioSink(task_runner_);
output_device_info = sink_->GetOutputDeviceInfo();
} else if (base::FeatureList::IsEnabled(kSuspendMutedAudio)) {
// If playback is muted, we use a fake sink for output until it unmutes.
null_sink_ = new NullAudioSink(task_runner_);
}
current_decoder_config_ = stream->audio_decoder_config();
DCHECK(current_decoder_config_.IsValidConfig());
const AudioParameters& hw_params = output_device_info.output_params();
ChannelLayout hw_channel_layout =
hw_params.IsValid() ? hw_params.channel_layout() : CHANNEL_LAYOUT_NONE;
DVLOG(1) << __func__ << ": " << hw_params.AsHumanReadableString();
AudioCodec codec = stream->audio_decoder_config().codec();
if (auto* mc = GetMediaClient()) {
const auto format = ConvertAudioCodecToBitstreamFormat(codec);
is_passthrough_ = mc->IsSupportedBitstreamAudioCodec(codec) &&
hw_params.IsFormatSupportedByHardware(format);
} else {
is_passthrough_ = false;
}
expecting_config_changes_ = stream->SupportsConfigChanges();
// AC3/EAC3 windows decoder supports input channel count in the range 1 (mono)
// to 8 (7.1 channel configuration), but output channel config are stereo, 5.1
// and 7.1. There will be channel config changes, so here force
// 'expecting_config_changes_' to true to use 'hw_channel_layout'.
// Refer to
// https://learn.microsoft.com/en-us/windows/win32/medfound/dolby-audio-decoder
#if BUILDFLAG(ENABLE_PLATFORM_AC3_EAC3_AUDIO) && BUILDFLAG(IS_WIN)
if (current_decoder_config_.codec() == AudioCodec::kAC3 ||
current_decoder_config_.codec() == AudioCodec::kEAC3) {
expecting_config_changes_ = true;
}
#endif // BUILDFLAG(ENABLE_PLATFORM_AC3_EAC3_AUDIO) && BUILDFLAG(IS_WIN)
bool use_stream_params = !expecting_config_changes_ || !hw_params.IsValid() ||
hw_params.format() == AudioParameters::AUDIO_FAKE ||
!sink_->IsOptimizedForHardwareParameters();
if (stream->audio_decoder_config().channel_layout() ==
CHANNEL_LAYOUT_DISCRETE &&
sink_->IsOptimizedForHardwareParameters()) {
use_stream_params = false;
}
// Target ~20ms for our buffer size (which is optimal for power efficiency and
// responsiveness to play/pause events), but if the hardware needs something
// even larger (say for Bluetooth devices) prefer that.
//
// Even if |use_stream_params| is true we should choose a value here based on
// hardware parameters since it affects the initial buffer size used by
// AudioRendererAlgorithm. Too small and we will underflow if the hardware
// asks for a buffer larger than the initial algorithm capacity.
const int preferred_buffer_size =
std::max(2 * stream->audio_decoder_config().samples_per_second() / 100,
hw_params.IsValid() ? hw_params.frames_per_buffer() : 0);
SampleFormat target_output_sample_format = kUnknownSampleFormat;
if (is_passthrough_) {
ChannelLayout channel_layout =
stream->audio_decoder_config().channel_layout();
int channels = stream->audio_decoder_config().channels();
int bytes_per_frame = stream->audio_decoder_config().bytes_per_frame();
AudioParameters::Format format = AudioParameters::AUDIO_FAKE;
// For DTS and Dolby formats, set target_output_sample_format to the
// respective bit-stream format so that passthrough decoder will be selected
// by MediaCodecAudioRenderer if this is running on Android.
if (codec == AudioCodec::kAC3) {
format = AudioParameters::AUDIO_BITSTREAM_AC3;
target_output_sample_format = kSampleFormatAc3;
} else if (codec == AudioCodec::kEAC3) {
format = AudioParameters::AUDIO_BITSTREAM_EAC3;
target_output_sample_format = kSampleFormatEac3;
} else if (codec == AudioCodec::kDTS) {
format = AudioParameters::AUDIO_BITSTREAM_DTS;
target_output_sample_format = kSampleFormatDts;
if (hw_params.RequireEncapsulation()) {
bytes_per_frame = 1;
channel_layout = CHANNEL_LAYOUT_MONO;
channels = 1;
}
} else {
NOTREACHED();
}
// If we want the precise PCM frame count here, we have to somehow peek the
// audio bitstream and parse the header ahead of time. Instead, we ensure
// audio bus being large enough to accommodate
// kMaxFramesPerCompressedAudioBuffer frames. The real data size and frame
// count for bitstream formats will be carried in additional fields of
// AudioBus.
const int buffer_size =
AudioParameters::kMaxFramesPerCompressedAudioBuffer * bytes_per_frame;
audio_parameters_.Reset(format, {channel_layout, channels},
stream->audio_decoder_config().samples_per_second(),
buffer_size);
buffer_converter_.reset();
} else if (use_stream_params) {
audio_parameters_.Reset(AudioParameters::AUDIO_PCM_LOW_LATENCY,
{stream->audio_decoder_config().channel_layout(),
stream->audio_decoder_config().channels()},
stream->audio_decoder_config().samples_per_second(),
preferred_buffer_size);
buffer_converter_.reset();
} else {
// To allow for seamless sample rate adaptations (i.e. changes from say
// 16kHz to 48kHz), always resample to the hardware rate.
int sample_rate = hw_params.sample_rate();
// If supported by the OS and the initial sample rate is not too low, let
// the OS level resampler handle resampling for power efficiency.
if (AudioLatency::IsResamplingPassthroughSupported(
AudioLatency::Type::kPlayback) &&
stream->audio_decoder_config().samples_per_second() >= 44100) {
sample_rate = stream->audio_decoder_config().samples_per_second();
}
int stream_channel_count = stream->audio_decoder_config().channels();
bool try_supported_channel_layouts = false;
#if BUILDFLAG(IS_WIN)
try_supported_channel_layouts =
base::CommandLine::ForCurrentProcess()->HasSwitch(
switches::kTrySupportedChannelLayouts);
#endif
// We don't know how to up-mix for DISCRETE layouts (fancy multichannel
// hardware with non-standard speaker arrangement). Instead, pretend the
// hardware layout is stereo and let the OS take care of further up-mixing
// to the discrete layout (http://crbug.com/266674). Additionally, pretend
// hardware is stereo whenever kTrySupportedChannelLayouts is set. This flag
// is for savvy users who want stereo content to output in all surround
// speakers. Using the actual layout (likely 5.1 or higher) will mean our
// mixer will attempt to up-mix stereo source streams to just the left/right
// speaker of the 5.1 setup, nulling out the other channels
// (http://crbug.com/177872).
hw_channel_layout = hw_params.channel_layout() == CHANNEL_LAYOUT_DISCRETE ||
try_supported_channel_layouts
? CHANNEL_LAYOUT_STEREO
: hw_params.channel_layout();
int hw_channel_count = ChannelLayoutToChannelCount(hw_channel_layout);
// The layout we pass to |audio_parameters_| will be used for the lifetime
// of this audio renderer, regardless of changes to hardware and/or stream
// properties. Below we choose the max of stream layout vs. hardware layout
// to leave room for changes to the hardware and/or stream (i.e. avoid
// premature down-mixing - http://crbug.com/379288).
// If stream_channels < hw_channels:
// Taking max means we up-mix to hardware layout. If stream later changes
// to have more channels, we aren't locked into down-mixing to the
// initial stream layout.
// If stream_channels > hw_channels:
// We choose to output stream's layout, meaning mixing is a no-op for the
// renderer. Browser-side will down-mix to the hardware config. If the
// hardware later changes to equal stream channels, browser-side will stop
// down-mixing and use the data from all stream channels.
ChannelLayout stream_channel_layout =
stream->audio_decoder_config().channel_layout();
bool use_stream_channel_layout = hw_channel_count <= stream_channel_count;
ChannelLayoutConfig renderer_channel_layout_config =
use_stream_channel_layout
? ChannelLayoutConfig(stream_channel_layout, stream_channel_count)
: ChannelLayoutConfig(hw_channel_layout, hw_channel_count);
audio_parameters_.Reset(hw_params.format(), renderer_channel_layout_config,
sample_rate,
AudioLatency::GetHighLatencyBufferSize(
sample_rate, preferred_buffer_size));
}
audio_parameters_.set_effects(audio_parameters_.effects() |
AudioParameters::MULTIZONE);
audio_parameters_.set_latency_tag(AudioLatency::Type::kPlayback);
if (!audio_parameters_.IsBitstreamFormat()) {
// Requesting audio offload if it is supported on output.
media::AudioParameters::HardwareCapabilities hardware_caps(0, 0, 0, true);
audio_parameters_.set_hardware_capabilities(hardware_caps);
}
audio_decoder_stream_ = std::make_unique<AudioDecoderStream>(
std::make_unique<AudioDecoderStream::StreamTraits>(
media_log_, hw_channel_layout, target_output_sample_format),
task_runner_, create_audio_decoders_cb_, media_log_);
audio_decoder_stream_->set_config_change_observer(base::BindRepeating(
&AudioRendererImpl::OnConfigChange, weak_factory_.GetWeakPtr()));
DVLOG(1) << __func__ << ": is_passthrough_=" << is_passthrough_
<< " codec=" << codec
<< " stream->audio_decoder_config().sample_format="
<< stream->audio_decoder_config().sample_format();
if (!client_->IsVideoStreamAvailable()) {
// When video is not available, audio prefetch can be enabled. See
// crbug/988535.
audio_parameters_.set_effects(audio_parameters_.effects() |
AudioParameters::AUDIO_PREFETCH);
}
last_decoded_channel_layout_ =
stream->audio_decoder_config().channel_layout();
is_encrypted_ = stream->audio_decoder_config().is_encrypted();
last_decoded_channels_ = stream->audio_decoder_config().channels();
{
// Set the |audio_clock_| under lock in case this is a reinitialize and some
// external caller to GetWallClockTimes() exists.
base::AutoLock lock(lock_);
audio_clock_ = std::make_unique<AudioClock>(
base::TimeDelta(), audio_parameters_.sample_rate());
}
audio_decoder_stream_->Initialize(
stream,
base::BindOnce(&AudioRendererImpl::OnAudioDecoderStreamInitialized,
weak_factory_.GetWeakPtr()),
cdm_context,
base::BindRepeating(&AudioRendererImpl::OnStatisticsUpdate,
weak_factory_.GetWeakPtr()),
base::BindRepeating(&AudioRendererImpl::OnWaiting,
weak_factory_.GetWeakPtr()));
}
void AudioRendererImpl::OnAudioDecoderStreamInitialized(bool success) {
DVLOG(1) << __func__ << ": " << success;
DCHECK(task_runner_->RunsTasksInCurrentSequence());
base::AutoLock auto_lock(lock_);
if (!success) {
state_ = kUninitialized;
FinishInitialization(DECODER_ERROR_NOT_SUPPORTED);
return;
}
if (!audio_parameters_.IsValid()) {
DVLOG(1) << __func__ << ": Invalid audio parameters: "
<< audio_parameters_.AsHumanReadableString();
ChangeState_Locked(kUninitialized);
// TODO(flim): If the channel layout is discrete but channel count is 0, a
// possible cause is that the input stream has > 8 channels but there is no
// Web Audio renderer attached and no channel mixing matrices defined for
// hardware renderers. Adding one for previewing content could be useful.
FinishInitialization(PIPELINE_ERROR_INITIALIZATION_FAILED);
return;
}
if (expecting_config_changes_ && !audio_parameters_.IsBitstreamFormat()) {
buffer_converter_ =
std::make_unique<AudioBufferConverter>(audio_parameters_);
}
// We're all good! Continue initializing the rest of the audio renderer
// based on the decoder format.
auto* media_client = GetMediaClient();
auto params =
(media_client ? media_client->GetAudioRendererAlgorithmParameters(
audio_parameters_)
: std::nullopt);
if (params && !client_->IsVideoStreamAvailable()) {
algorithm_ =
std::make_unique<AudioRendererAlgorithm>(media_log_, params.value());
} else {
algorithm_ = std::make_unique<AudioRendererAlgorithm>(media_log_);
}
algorithm_->Initialize(audio_parameters_, is_encrypted_);
if (latency_hint_)
algorithm_->SetLatencyHint(latency_hint_);
algorithm_->SetPreservesPitch(preserves_pitch_);
ConfigureChannelMask();
ChangeState_Locked(kFlushed);
{
base::AutoUnlock auto_unlock(lock_);
sink_->Initialize(audio_parameters_, this);
if (null_sink_) {
null_sink_->Initialize(audio_parameters_, this);
null_sink_->Start(); // Does nothing but reduce state bookkeeping.
real_sink_needs_start_ = true;
} else {
// Even when kSuspendMutedAudio is enabled, we can hit this path if we are
// exclusively using NullAudioSink due to OnDeviceInfoReceived() failure.
sink_->Start();
sink_->Pause(); // Sinks play on start.
}
SetVolume(volume_);
}
DCHECK(!sink_playing_);
FinishInitialization(PIPELINE_OK);
}
void AudioRendererImpl::FinishInitialization(PipelineStatus status) {
DCHECK(init_cb_);
TRACE_EVENT_NESTABLE_ASYNC_END1("media", "AudioRendererImpl::Initialize",
TRACE_ID_LOCAL(this), "status",
PipelineStatusToString(status));
std::move(init_cb_).Run(status);
}
void AudioRendererImpl::FinishFlush() {
DCHECK(flush_cb_);
TRACE_EVENT_NESTABLE_ASYNC_END0("media", "AudioRendererImpl::Flush",
TRACE_ID_LOCAL(this));
// The |flush_cb_| must always post in order to avoid deadlocking, as some of
// the functions which may be bound here are re-entrant into lock-acquiring
// methods of AudioRendererImpl, and FinishFlush may be called while holding
// the lock. See crbug.com/c/1163459 for a detailed explanation of this.
task_runner_->PostTask(FROM_HERE, std::move(flush_cb_));
}
void AudioRendererImpl::OnPlaybackError(PipelineStatus error) {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
client_->OnError(error);
}
void AudioRendererImpl::OnPlaybackEnded() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
client_->OnEnded();
}
void AudioRendererImpl::OnStatisticsUpdate(const PipelineStatistics& stats) {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
client_->OnStatisticsUpdate(stats);
}
void AudioRendererImpl::OnBufferingStateChange(BufferingState buffering_state) {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
// "Underflow" is only possible when playing. This avoids noise like blaming
// the decoder for an "underflow" that is really just a seek.
BufferingStateChangeReason reason = BUFFERING_CHANGE_REASON_UNKNOWN;
if (state_ == kPlaying && buffering_state == BUFFERING_HAVE_NOTHING) {
reason = audio_decoder_stream_->is_demuxer_read_pending()
? DEMUXER_UNDERFLOW
: DECODER_UNDERFLOW;
}
media_log_->AddEvent<MediaLogEvent::kBufferingStateChanged>(
SerializableBufferingState<SerializableBufferingStateType::kAudio>{
buffering_state, reason});
client_->OnBufferingStateChange(buffering_state, reason);
}
void AudioRendererImpl::OnWaiting(WaitingReason reason) {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
client_->OnWaiting(reason);
}
void AudioRendererImpl::SetVolume(float volume) {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
// Only consider audio as unmuted if the volume is set to a non-zero value
// when the state is kPlaying.
if (state_ == kPlaying) {
was_unmuted_ = was_unmuted_ || volume != 0;
}
if (state_ == kUninitialized || state_ == kInitializing) {
volume_ = volume;
return;
}
sink_->SetVolume(volume);
if (!null_sink_) {
// Either null sink suspension is not enabled or we're already on the null
// sink due to failing to get device parameters.
return;
}
null_sink_->SetVolume(volume);
// Two cases to handle:
// 1. Changing from muted to unmuted state.
// 2. Unmuted startup case.
if ((!volume_ && volume) || (volume && real_sink_needs_start_)) {
// Suspend null audio sink (does nothing if unused).
null_sink_->Pause();
// Complete startup for the real sink if needed.
if (real_sink_needs_start_) {
sink_->Start();
if (!sink_playing_)
sink_->Pause(); // Sinks play on start.
real_sink_needs_start_ = false;
}
// Start sink playback if needed.
if (sink_playing_)
sink_->Play();
} else if (volume_ && !volume) {
// Suspend the real sink (does nothing if unused).
sink_->Pause();
// Start fake sink playback if needed.
if (sink_playing_)
null_sink_->Play();
}
volume_ = volume;
}
void AudioRendererImpl::SetLatencyHint(
std::optional<base::TimeDelta> latency_hint) {
base::AutoLock auto_lock(lock_);
latency_hint_ = latency_hint;
if (algorithm_) {
algorithm_->SetLatencyHint(latency_hint);
// See if we need further reads to fill up to the new playback threshold.
// This may be needed if rendering isn't active to schedule regular reads.
AttemptRead_Locked();
}
}
void AudioRendererImpl::SetPreservesPitch(bool preserves_pitch) {
base::AutoLock auto_lock(lock_);
preserves_pitch_ = preserves_pitch;
if (algorithm_)
algorithm_->SetPreservesPitch(preserves_pitch);
}
void AudioRendererImpl::SetWasPlayedWithUserActivationAndHighMediaEngagement(
bool was_played_with_user_activation_and_high_media_engagement) {
base::AutoLock auto_lock(lock_);
was_played_with_user_activation_and_high_media_engagement_ =
was_played_with_user_activation_and_high_media_engagement;
}
void AudioRendererImpl::OnSuspend() {
base::AutoLock auto_lock(lock_);
is_suspending_ = true;
}
void AudioRendererImpl::OnResume() {
base::AutoLock auto_lock(lock_);
is_suspending_ = false;
}
void AudioRendererImpl::SetPlayDelayCBForTesting(PlayDelayCBForTesting cb) {
DCHECK_EQ(state_, kUninitialized);
play_delay_cb_for_testing_ = std::move(cb);
}
void AudioRendererImpl::DecodedAudioReady(
AudioDecoderStream::ReadResult result) {
DVLOG(2) << __func__ << "(" << static_cast<int>(result.code()) << ")";
DCHECK(task_runner_->RunsTasksInCurrentSequence());
base::AutoLock auto_lock(lock_);
DCHECK(state_ != kUninitialized);
CHECK(pending_read_);
pending_read_ = false;
if (!result.has_value()) {
auto status = PIPELINE_ERROR_DECODE;
if (result.code() == DecoderStatus::Codes::kAborted)
status = PIPELINE_OK;
else if (result.code() == DecoderStatus::Codes::kDisconnected)
status = PIPELINE_ERROR_DISCONNECTED;
HandleAbortedReadOrDecodeError(status);
return;
}
scoped_refptr<AudioBuffer> buffer = std::move(result).value();
DCHECK(buffer);
if (state_ == kFlushing) {
ChangeState_Locked(kFlushed);
DoFlush_Locked();
return;
}
bool need_another_buffer = true;
// FFmpeg allows "channel pair element" and "single channel element" type
// AAC streams to masquerade as mono and stereo respectively. Allow these
// specific exceptions to avoid playback errors.
bool allow_config_changes = expecting_config_changes_;
if (!expecting_config_changes_ && !buffer->end_of_stream() &&
current_decoder_config_.codec() == AudioCodec::kAAC &&
buffer->sample_rate() == audio_parameters_.sample_rate()) {
const bool is_mono_to_stereo =
buffer->channel_layout() == CHANNEL_LAYOUT_MONO &&
audio_parameters_.channel_layout() == CHANNEL_LAYOUT_STEREO;
const bool is_stereo_to_mono =
buffer->channel_layout() == CHANNEL_LAYOUT_STEREO &&
audio_parameters_.channel_layout() == CHANNEL_LAYOUT_MONO;
if (is_mono_to_stereo || is_stereo_to_mono) {
if (!buffer_converter_ && !audio_parameters_.IsBitstreamFormat()) {
buffer_converter_ =
std::make_unique<AudioBufferConverter>(audio_parameters_);
}
allow_config_changes = true;
}
}
if (allow_config_changes) {
if (!buffer->end_of_stream()) {
if (last_decoded_sample_rate_ &&
buffer->sample_rate() != last_decoded_sample_rate_) {
DVLOG(1) << __func__ << " Updating audio sample_rate."
<< " ts:" << buffer->timestamp().InMicroseconds()
<< " old:" << last_decoded_sample_rate_
<< " new:" << buffer->sample_rate();
// Send a bogus config to reset timestamp state.
OnConfigChange(AudioDecoderConfig());
}
last_decoded_sample_rate_ = buffer->sample_rate();
if (last_decoded_channel_layout_ != buffer->channel_layout()) {
if (buffer->channel_layout() == CHANNEL_LAYOUT_DISCRETE) {
MEDIA_LOG(ERROR, media_log_)
<< "Unsupported midstream configuration change! Discrete channel"
<< " layout not allowed by sink.";
HandleAbortedReadOrDecodeError(PIPELINE_ERROR_DECODE);
return;
} else {
last_decoded_channel_layout_ = buffer->channel_layout();
last_decoded_channels_ = buffer->channel_count();
ConfigureChannelMask();
}
}
}
if (audio_parameters_.IsBitstreamFormat()) {
// Avoid using `buffer_converter_` for bitstreams, as resampling the
// bitstream data doesn't make sense.
CHECK(!buffer_converter_);
need_another_buffer = HandleDecodedBuffer_Locked(std::move(buffer));
} else {
DCHECK(buffer_converter_);
buffer_converter_->AddInput(std::move(buffer));
while (buffer_converter_->HasNextBuffer()) {
need_another_buffer =
HandleDecodedBuffer_Locked(buffer_converter_->GetNextBuffer());
}
}
} else {
// TODO(chcunningham, tguilbert): Figure out if we want to support implicit
// config changes during src=. Doing so requires resampling each individual
// stream which is inefficient when there are many tags in a page.
//
// Check if the buffer we received matches the expected configuration.
// Note: We explicitly do not check channel layout here to avoid breaking
// weird behavior with multichannel wav files: http://crbug.com/600538.
if (!buffer->end_of_stream() &&
(buffer->sample_rate() != audio_parameters_.sample_rate() ||
buffer->channel_count() != audio_parameters_.channels())) {
MEDIA_LOG(ERROR, media_log_)
<< "Unsupported midstream configuration change!"
<< " Sample Rate: " << buffer->sample_rate() << " vs "
<< audio_parameters_.sample_rate()
<< ", Channels: " << buffer->channel_count() << " vs "
<< audio_parameters_.channels();
HandleAbortedReadOrDecodeError(PIPELINE_ERROR_DECODE);
return;
}
need_another_buffer = HandleDecodedBuffer_Locked(std::move(buffer));
}
if (!need_another_buffer && !CanRead_Locked())
return;
AttemptRead_Locked();
}
bool AudioRendererImpl::HandleDecodedBuffer_Locked(
scoped_refptr<AudioBuffer> buffer) {
lock_.AssertAcquired();
bool should_render_end_of_stream = false;
if (buffer->end_of_stream()) {
received_end_of_stream_ = true;
algorithm_->MarkEndOfStream();
// We received no audio to play before EOS, so enter the ended state.
if (first_packet_timestamp_ == kNoTimestamp)
should_render_end_of_stream = true;
} else {
if (buffer->IsBitstreamFormat() && state_ == kPlaying) {
if (IsBeforeStartTime(*buffer))
return true;
// Adjust the start time since we are unable to trim a compressed audio
// buffer.
if (buffer->timestamp() < start_timestamp_ &&
(buffer->timestamp() + buffer->duration()) > start_timestamp_) {
start_timestamp_ = buffer->timestamp();
audio_clock_ = std::make_unique<AudioClock>(
buffer->timestamp(), audio_parameters_.sample_rate());
}
} else if (state_ == kPlaying) {
if (IsBeforeStartTime(*buffer))
return true;
// Trim off any additional time before the start timestamp.
const base::TimeDelta trim_time = start_timestamp_ - buffer->timestamp();
if (trim_time.is_positive()) {
const int frames_to_trim = AudioTimestampHelper::TimeToFrames(
trim_time, buffer->sample_rate());
DVLOG(1) << __func__ << ": Trimming first audio buffer by "
<< frames_to_trim << " frames so it starts at "
<< start_timestamp_;
buffer->TrimStart(frames_to_trim);
buffer->set_timestamp(start_timestamp_);
}
// If the entire buffer was trimmed, request a new one.
if (!buffer->frame_count())
return true;
}
// Store the timestamp of the first packet so we know when to start actual
// audio playback.
if (first_packet_timestamp_ == kNoTimestamp)
first_packet_timestamp_ = buffer->timestamp();
#if !BUILDFLAG(IS_ANDROID)
// Do not transcribe muted streams initiated by autoplay if the stream was
// never unmuted.
if (transcribe_audio_callback_ &&
(was_played_with_user_activation_and_high_media_engagement_ ||
was_unmuted_)) {
transcribe_audio_callback_.Run(buffer);
}
#endif
if (state_ != kUninitialized)
algorithm_->EnqueueBuffer(std::move(buffer));
}
const size_t memory_usage = algorithm_->GetMemoryUsage();
PipelineStatistics stats;
stats.audio_memory_usage = memory_usage - last_audio_memory_usage_;
last_audio_memory_usage_ = memory_usage;
task_runner_->PostTask(FROM_HERE,
base::BindOnce(&AudioRendererImpl::OnStatisticsUpdate,
weak_factory_.GetWeakPtr(), stats));
switch (state_) {
case kUninitialized:
case kInitializing:
case kFlushing:
NOTREACHED();
case kFlushed:
DCHECK(!pending_read_);
return false;
case kPlaying:
if (received_end_of_stream_ || algorithm_->IsQueueAdequateForPlayback()) {
if (buffering_state_ == BUFFERING_HAVE_NOTHING)
SetBufferingState_Locked(BUFFERING_HAVE_ENOUGH);
// This must be done after SetBufferingState_Locked() to ensure the
// proper state transitions for higher levels.
if (should_render_end_of_stream) {
task_runner_->PostTask(
FROM_HERE, base::BindOnce(&AudioRendererImpl::OnPlaybackEnded,
weak_factory_.GetWeakPtr()));
}
return false;
}
return true;
}
return false;
}
void AudioRendererImpl::AttemptRead() {
base::AutoLock auto_lock(lock_);
AttemptRead_Locked();
}
void AudioRendererImpl::AttemptRead_Locked() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
lock_.AssertAcquired();
if (!CanRead_Locked())
return;
pending_read_ = true;
// Don't hold the lock while calling Read(), if the demuxer is busy this will
// block audio rendering for an extended period of time.
// |audio_decoder_stream_| is only accessed on |task_runner_| so this is safe.
base::AutoUnlock auto_unlock(lock_);
audio_decoder_stream_->Read(base::BindOnce(
&AudioRendererImpl::DecodedAudioReady, weak_factory_.GetWeakPtr()));
}
bool AudioRendererImpl::CanRead_Locked() {
lock_.AssertAcquired();
switch (state_) {
case kUninitialized:
case kInitializing:
case kFlushing:
case kFlushed:
return false;
case kPlaying:
break;
}
return !pending_read_ && !received_end_of_stream_ &&
!algorithm_->IsQueueFull();
}
void AudioRendererImpl::SetPlaybackRate(double playback_rate) {
DVLOG(1) << __func__ << "(" << playback_rate << ")";
DCHECK(task_runner_->RunsTasksInCurrentSequence());
DCHECK_GE(playback_rate, 0);
DCHECK(sink_);
base::AutoLock auto_lock(lock_);
if (is_passthrough_ && playback_rate != 0 && playback_rate != 1) {
MEDIA_LOG(INFO, media_log_) << "Playback rate changes are not supported "
"when output compressed bitstream."
<< " Playback Rate: " << playback_rate;
return;
}
// We have two cases here:
// Play: current_playback_rate == 0 && playback_rate != 0
// Pause: current_playback_rate != 0 && playback_rate == 0
double current_playback_rate = playback_rate_;
playback_rate_ = playback_rate;
if (!rendering_)
return;
if (current_playback_rate == 0 && playback_rate != 0) {
StartRendering_Locked();
return;
}
if (current_playback_rate != 0 && playback_rate == 0) {
StopRendering_Locked();
return;
}
}
bool AudioRendererImpl::IsBeforeStartTime(const AudioBuffer& buffer) {
DCHECK_EQ(state_, kPlaying);
return !buffer.end_of_stream() &&
(buffer.timestamp() + buffer.duration()) < start_timestamp_;
}
int AudioRendererImpl::Render(base::TimeDelta delay,
base::TimeTicks delay_timestamp,
const AudioGlitchInfo& glitch_info,
AudioBus* audio_bus) {
TRACE_EVENT("media", "AudioRendererImpl::Render", "id", player_id_,
"playout_delay (ms)", delay.InMillisecondsF(),
"delay_timestamp (ms)",
(delay_timestamp - base::TimeTicks()).InMillisecondsF());
int frames_requested = audio_bus->frames();
DVLOG(4) << __func__ << " delay:" << delay << " glitch_info:["
<< glitch_info.ToString() << "]"
<< " frames_requested:" << frames_requested;
// Since this information is coming from the OS or potentially a fake stream,
// it may end up with spurious values.
if (delay.is_negative()) {
delay = base::TimeDelta();
}
if (delay > base::Seconds(1)) {
LIMITED_MEDIA_LOG(WARNING, media_log_, num_absurd_delay_warnings_, 1)
<< "Large rendering delay (" << delay.InSecondsF()
<< "s) detected; video may stall or be otherwise out of sync with "
"audio.";
}
int frames_written = 0;
{
base::AutoLock auto_lock(lock_);
last_render_time_ = tick_clock_->NowTicks();
int64_t frames_delayed = AudioTimestampHelper::TimeToFrames(
delay, audio_parameters_.sample_rate());
if (!stop_rendering_time_.is_null()) {
audio_clock_->CompensateForSuspendedWrites(
last_render_time_ - stop_rendering_time_, frames_delayed);
stop_rendering_time_ = base::TimeTicks();
}
// When WSOLA is used for playback rate changes, its effect is non-linear,
// so we need to adjust the playback rate given to AudioClock to avoid a/v
// sync issues over time.
double effective_playback_rate = playback_rate_;
// Ensure Stop() hasn't destroyed our |algorithm_| on the pipeline thread.
if (!algorithm_) {
audio_clock_->WroteAudio(0, frames_requested, frames_delayed,
playback_rate_);
return 0;
}
if (playback_rate_ == 0 || is_suspending_) {
audio_clock_->WroteAudio(0, frames_requested, frames_delayed,
playback_rate_);
return 0;
}
// Mute audio by returning 0 when not playing.
if (state_ != kPlaying) {
audio_clock_->WroteAudio(0, frames_requested, frames_delayed,
playback_rate_);
return 0;
}
if (is_passthrough_ && algorithm_->BufferedFrames() > 0) {
DCHECK_EQ(playback_rate_, 1.0);
// TODO(tsunghung): For compressed bitstream formats, play zeroed buffer
// won't generate delay. It could be discarded immediately. Need another
// way to generate audio delay.
const base::TimeDelta play_delay =
first_packet_timestamp_ - audio_clock_->back_timestamp();
if (play_delay.is_positive()) {
MEDIA_LOG(ERROR, media_log_)
<< "Cannot add delay for compressed audio bitstream format."
<< " Requested delay: " << play_delay;
}
frames_written += algorithm_->FillBuffer(audio_bus, 0, frames_requested,
playback_rate_);
// See Initialize(), the |audio_bus| should be bigger than we need in
// bitstream cases. Fix |frames_requested| to avoid incorrect time
// calculation of |audio_clock_| below.
frames_requested = frames_written;
} else if (algorithm_->BufferedFrames() > 0) {
// Delay playback by writing silence if we haven't reached the first
// timestamp yet; this can occur if the video starts before the audio.
CHECK_NE(first_packet_timestamp_, kNoTimestamp);
CHECK_GE(first_packet_timestamp_, base::TimeDelta());
const base::TimeDelta play_delay =
first_packet_timestamp_ - audio_clock_->back_timestamp();
if (play_delay.is_positive()) {
DCHECK_EQ(frames_written, 0);
if (!play_delay_cb_for_testing_.is_null())
play_delay_cb_for_testing_.Run(play_delay);
// Don't multiply |play_delay| out since it can be a huge value on
// poorly encoded media and multiplying by the sample rate could cause
// the value to overflow.
if (play_delay.InSecondsF() > static_cast<double>(frames_requested) /
audio_parameters_.sample_rate()) {
frames_written = frames_requested;
} else {
frames_written =
play_delay.InSecondsF() * audio_parameters_.sample_rate();
}
audio_bus->ZeroFramesPartial(0, frames_written);
}
// If there's any space left, actually render the audio; this is where the
// aural magic happens.
if (frames_written < frames_requested) {
DVLOG(4) << __func__ << ": drift="
<< CalculateClockAndAlgorithmDrift().InMicroseconds() << "us";
const auto frames_filled = algorithm_->FillBuffer(
audio_bus, frames_written, frames_requested - frames_written,
playback_rate_);
frames_written += frames_filled;
effective_playback_rate = algorithm_->effective_playback_rate();
DVLOG(4) << __func__ << ": frames_filled=" << frames_filled
<< ", playback_rate_=" << playback_rate_
<< ", effective_playback_rate=" << effective_playback_rate;
}
}
// We use the following conditions to determine end of playback:
// 1) Algorithm can not fill the audio callback buffer
// 2) We received an end of stream buffer
// 3) We haven't already signalled that we've ended
// 4) We've played all known audio data sent to hardware
//
// We use the following conditions to determine underflow:
// 1) Algorithm can not fill the audio callback buffer
// 2) We have NOT received an end of stream buffer
// 3) We are in the kPlaying state
//
// Otherwise the buffer has data we can send to the device.
//
// Per the TimeSource API the media time should always increase even after
// we've rendered all known audio data. Doing so simplifies scenarios where
// we have other sources of media data that need to be scheduled after audio
// data has ended.
//
// That being said, we don't want to advance time when underflowed as we
// know more decoded frames will eventually arrive. If we did, we would
// throw things out of sync when said decoded frames arrive.
int frames_after_end_of_stream = 0;
if (frames_written == 0) {
if (received_end_of_stream_) {
if (ended_timestamp_ == kInfiniteDuration)
ended_timestamp_ = audio_clock_->back_timestamp();
frames_after_end_of_stream = frames_requested;
} else if (state_ == kPlaying &&
buffering_state_ != BUFFERING_HAVE_NOTHING) {
// Don't increase queue capacity if the queue latency is explicitly
// specified.
if (!latency_hint_)
algorithm_->IncreasePlaybackThreshold();
SetBufferingState_Locked(BUFFERING_HAVE_NOTHING);
}
} else if (frames_written < frames_requested && !received_end_of_stream_ &&
state_ == kPlaying &&
buffering_state_ != BUFFERING_HAVE_NOTHING) {
// If we only partially filled the request and should have more data, go
// ahead and increase queue capacity to try and meet the next request.
// Trigger underflow to give us a chance to refill up to the new cap.
// When a latency hint is present, don't override the user's preference
// with a queue increase, but still signal HAVE_NOTHING for them to take
// action if they choose.
if (!latency_hint_)
algorithm_->IncreasePlaybackThreshold();
SetBufferingState_Locked(BUFFERING_HAVE_NOTHING);
}
// Note: effective_playback_rate() is used here because WSOLA is a
// non-linear operation. E.g., for a `playback_rate_` of 2.0 WSOLA may end
// up with effective rates between 1 and 3 and a/v sync drift of +/- 20ms.
// This effect is normally cyclical, so it doesn't build over time... except
// during repeated playback changes. https://crbug.com/40190553
//
// Teaching AudioClock about non-linear time would be difficult, but luckily
// we can approximate it well enough by just calculating an effective rate
// as frames consumed / frames produced for each FillBuffer() call.
audio_clock_->WroteAudio(frames_written + frames_after_end_of_stream,
frames_requested, frames_delayed,
effective_playback_rate);
if (CanRead_Locked()) {
task_runner_->PostTask(FROM_HERE,
base::BindOnce(&AudioRendererImpl::AttemptRead,
weak_factory_.GetWeakPtr()));
}
if (audio_clock_->front_timestamp() >= ended_timestamp_ &&
!rendered_end_of_stream_) {
rendered_end_of_stream_ = true;
task_runner_->PostTask(FROM_HERE,
base::BindOnce(&AudioRendererImpl::OnPlaybackEnded,
weak_factory_.GetWeakPtr()));
}
}
DCHECK_LE(frames_written, frames_requested);
return frames_written;
}
void AudioRendererImpl::OnRenderError() {
MEDIA_LOG(ERROR, media_log_) << "audio render error";
// Post to |task_runner_| as this is called on the audio callback thread.
task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&AudioRendererImpl::OnPlaybackError,
weak_factory_.GetWeakPtr(), AUDIO_RENDERER_ERROR));
}
void AudioRendererImpl::HandleAbortedReadOrDecodeError(PipelineStatus status) {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
lock_.AssertAcquired();
switch (state_) {
case kUninitialized:
case kInitializing:
NOTREACHED();
case kFlushing:
ChangeState_Locked(kFlushed);
if (status == PIPELINE_OK) {
DoFlush_Locked();
return;
}
MEDIA_LOG(ERROR, media_log_)
<< "audio error during flushing, status: " << status;
client_->OnError(status);
FinishFlush();
return;
case kFlushed:
case kPlaying:
if (status != PIPELINE_OK) {
MEDIA_LOG(ERROR, media_log_)
<< "audio error during playing, status: " << status;
client_->OnError(status);
}
return;
}
}
void AudioRendererImpl::ChangeState_Locked(State new_state) {
DVLOG(1) << __func__ << " : " << state_ << " -> " << new_state;
lock_.AssertAcquired();
state_ = new_state;
}
void AudioRendererImpl::OnConfigChange(const AudioDecoderConfig& config) {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
DCHECK(expecting_config_changes_);
// We don't use `buffer_converter_` for bitstream formats.
CHECK(buffer_converter_ || audio_parameters_.IsBitstreamFormat());
if (buffer_converter_) {
buffer_converter_->ResetTimestampState();
}
// An invalid config may be supplied by callers who simply want to reset
// internal state outside of detecting a new config from the demuxer stream.
// RendererClient only cares to know about config changes that differ from
// previous configs.
if (config.IsValidConfig() && !current_decoder_config_.Matches(config)) {
current_decoder_config_ = config;
client_->OnAudioConfigChange(config);
}
}
void AudioRendererImpl::SetBufferingState_Locked(
BufferingState buffering_state) {
DVLOG(1) << __func__ << " : " << buffering_state_ << " -> "
<< buffering_state;
DCHECK_NE(buffering_state_, buffering_state);
lock_.AssertAcquired();
buffering_state_ = buffering_state;
task_runner_->PostTask(
FROM_HERE, base::BindOnce(&AudioRendererImpl::OnBufferingStateChange,
weak_factory_.GetWeakPtr(), buffering_state_));
}
void AudioRendererImpl::ConfigureChannelMask() {
DCHECK(algorithm_);
DCHECK(audio_parameters_.IsValid());
DCHECK_NE(last_decoded_channel_layout_, CHANNEL_LAYOUT_NONE);
DCHECK_NE(last_decoded_channel_layout_, CHANNEL_LAYOUT_UNSUPPORTED);
// If we're actually downmixing the signal, no mask is necessary, but ensure
// we clear any existing mask if present.
if (last_decoded_channels_ >= audio_parameters_.channels()) {
algorithm_->SetChannelMask(
std::vector<bool>(audio_parameters_.channels(), true));
return;
}
// Determine the matrix used to upmix the channels.
std::vector<std::vector<float>> matrix;
ChannelMixingMatrix(last_decoded_channel_layout_, last_decoded_channels_,
audio_parameters_.channel_layout(),
audio_parameters_.channels())
.CreateTransformationMatrix(&matrix);
// All channels with a zero mix are muted and can be ignored.
std::vector<bool> channel_mask(audio_parameters_.channels(), false);
for (size_t ch = 0; ch < matrix.size(); ++ch) {
channel_mask[ch] =
base::ranges::any_of(matrix[ch], [](float mix) { return !!mix; });
}
algorithm_->SetChannelMask(std::move(channel_mask));
}
void AudioRendererImpl::EnableSpeechRecognition() {
#if !BUILDFLAG(IS_ANDROID)
DCHECK(task_runner_->RunsTasksInCurrentSequence());
transcribe_audio_callback_ = base::BindRepeating(
&AudioRendererImpl::TranscribeAudio, weak_factory_.GetWeakPtr());
#endif
}
void AudioRendererImpl::TranscribeAudio(
scoped_refptr<media::AudioBuffer> buffer) {
#if !BUILDFLAG(IS_ANDROID)
DCHECK(task_runner_->RunsTasksInCurrentSequence());
if (speech_recognition_client_)
speech_recognition_client_->AddAudio(std::move(buffer));
#endif
}
base::TimeDelta AudioRendererImpl::CalculateClockAndAlgorithmDrift() const {
return algorithm_->FrontTimestamp().value_or(audio_clock_->back_timestamp()) -
audio_clock_->back_timestamp();
}
} // namespace media