1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
mojo / core / ports / node.cc [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "mojo/core/ports/node.h"
#include <string.h>
#include <algorithm>
#include <atomic>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/not_fatal_until.h"
#include "base/notreached.h"
#include "base/rand_util.h"
#include "base/synchronization/lock.h"
#include "base/threading/thread_local.h"
#include "build/build_config.h"
#include "mojo/core/ports/event.h"
#include "mojo/core/ports/node_delegate.h"
#include "mojo/core/ports/port_locker.h"
#include "third_party/abseil-cpp/absl/container/inlined_vector.h"
namespace mojo {
namespace core {
namespace ports {
namespace {
constexpr size_t kRandomNameCacheSize = 256;
// Random port name generator which maintains a cache of random bytes to draw
// from. This amortizes the cost of random name generation on platforms where
// RandBytes may have significant per-call overhead.
//
// Note that the use of this cache means one has to be careful about fork()ing
// a process once any port names have been generated, as that behavior can lead
// to collisions between independently generated names in different processes.
class RandomNameGenerator {
public:
RandomNameGenerator() = default;
RandomNameGenerator(const RandomNameGenerator&) = delete;
RandomNameGenerator& operator=(const RandomNameGenerator&) = delete;
~RandomNameGenerator() = default;
PortName GenerateRandomPortName() {
base::AutoLock lock(lock_);
if (cache_index_ == kRandomNameCacheSize) {
base::RandBytes(base::as_writable_byte_span(cache_));
cache_index_ = 0;
}
return cache_[cache_index_++];
}
private:
base::Lock lock_;
PortName cache_[kRandomNameCacheSize];
size_t cache_index_ = kRandomNameCacheSize;
};
base::LazyInstance<RandomNameGenerator>::Leaky g_name_generator =
LAZY_INSTANCE_INITIALIZER;
int DebugError(const char* message, int error_code) {
NOTREACHED() << "Oops: " << message;
}
#define OOPS(x) DebugError(#x, x)
bool CanAcceptMoreMessages(const Port* port) {
// Have we already doled out the last message (i.e., do we expect to NOT
// receive further messages)?
uint64_t next_sequence_num = port->message_queue.next_sequence_num();
if (port->state == Port::kClosed)
return false;
if (port->peer_closed || port->remove_proxy_on_last_message) {
if (port->peer_lost_unexpectedly)
return port->message_queue.HasNextMessage();
if (port->last_sequence_num_to_receive == next_sequence_num - 1)
return false;
}
return true;
}
void GenerateRandomPortName(PortName* name) {
*name = g_name_generator.Get().GenerateRandomPortName();
}
} // namespace
Node::Node(const NodeName& name, NodeDelegate* delegate)
: name_(name), delegate_(this, delegate) {}
Node::~Node() {
if (!ports_.empty())
DLOG(WARNING) << "Unclean shutdown for node " << name_;
}
bool Node::CanShutdownCleanly(ShutdownPolicy policy) {
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock ports_lock(ports_lock_);
if (policy == ShutdownPolicy::DONT_ALLOW_LOCAL_PORTS) {
#if DCHECK_IS_ON()
for (auto& entry : ports_) {
DVLOG(2) << "Port " << entry.first << " referencing node "
<< entry.second->peer_node_name << " is blocking shutdown of "
<< "node " << name_ << " (state=" << entry.second->state << ")";
}
#endif
return ports_.empty();
}
DCHECK_EQ(policy, ShutdownPolicy::ALLOW_LOCAL_PORTS);
// NOTE: This is not efficient, though it probably doesn't need to be since
// relatively few ports should be open during shutdown and shutdown doesn't
// need to be blazingly fast.
bool can_shutdown = true;
for (auto& entry : ports_) {
PortRef port_ref(entry.first, entry.second);
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->peer_node_name != name_ && port->state != Port::kReceiving) {
can_shutdown = false;
#if DCHECK_IS_ON()
DVLOG(2) << "Port " << entry.first << " referencing node "
<< port->peer_node_name << " is blocking shutdown of "
<< "node " << name_ << " (state=" << port->state << ")";
#else
// Exit early when not debugging.
break;
#endif
}
}
return can_shutdown;
}
int Node::GetPort(const PortName& port_name, PortRef* port_ref) {
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock lock(ports_lock_);
auto iter = ports_.find(port_name);
if (iter == ports_.end())
return ERROR_PORT_UNKNOWN;
#if BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_ARM64)
// Workaround for https://crbug.com/665869.
std::atomic_thread_fence(std::memory_order_seq_cst);
#endif
*port_ref = PortRef(port_name, iter->second);
return OK;
}
int Node::CreateUninitializedPort(PortRef* port_ref) {
PortName port_name;
GenerateRandomPortName(&port_name);
scoped_refptr<Port> port(new Port(kInitialSequenceNum, kInitialSequenceNum));
int rv = AddPortWithName(port_name, port);
if (rv != OK)
return rv;
*port_ref = PortRef(port_name, std::move(port));
return OK;
}
int Node::InitializePort(const PortRef& port_ref,
const NodeName& peer_node_name,
const PortName& peer_port_name,
const NodeName& prev_node_name,
const PortName& prev_port_name) {
{
// Must be acquired for UpdatePortPeerAddress below.
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock ports_locker(ports_lock_);
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state != Port::kUninitialized)
return ERROR_PORT_STATE_UNEXPECTED;
port->state = Port::kReceiving;
UpdatePortPeerAddress(port_ref.name(), port, peer_node_name,
peer_port_name);
port->prev_node_name = prev_node_name;
port->prev_port_name = prev_port_name;
}
delegate_->PortStatusChanged(port_ref);
return OK;
}
int Node::CreatePortPair(PortRef* port0_ref, PortRef* port1_ref) {
int rv;
rv = CreateUninitializedPort(port0_ref);
if (rv != OK)
return rv;
rv = CreateUninitializedPort(port1_ref);
if (rv != OK)
return rv;
rv = InitializePort(*port0_ref, name_, port1_ref->name(), name_,
port1_ref->name());
if (rv != OK)
return rv;
rv = InitializePort(*port1_ref, name_, port0_ref->name(), name_,
port0_ref->name());
if (rv != OK)
return rv;
return OK;
}
int Node::SetUserData(const PortRef& port_ref,
scoped_refptr<UserData> user_data) {
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state == Port::kClosed)
return ERROR_PORT_STATE_UNEXPECTED;
port->user_data = std::move(user_data);
return OK;
}
int Node::GetUserData(const PortRef& port_ref,
scoped_refptr<UserData>* user_data) {
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state == Port::kClosed)
return ERROR_PORT_STATE_UNEXPECTED;
*user_data = port->user_data;
return OK;
}
int Node::ClosePort(const PortRef& port_ref) {
std::vector<std::unique_ptr<UserMessageEvent>> undelivered_messages;
NodeName peer_node_name;
PortName peer_port_name;
uint64_t sequence_num = 0;
uint64_t last_sequence_num = 0;
bool was_initialized = false;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
switch (port->state) {
case Port::kUninitialized:
break;
case Port::kReceiving:
was_initialized = true;
port->state = Port::kClosed;
// We pass along the sequence number of the last message sent from this
// port to allow the peer to have the opportunity to consume all inbound
// messages before notifying the embedder that this port is closed.
last_sequence_num = port->next_sequence_num_to_send - 1;
peer_node_name = port->peer_node_name;
peer_port_name = port->peer_port_name;
sequence_num = port->next_control_sequence_num_to_send++;
// If the port being closed still has unread messages, then we need to
// take care to close those ports so as to avoid leaking memory.
port->message_queue.TakeAllMessages(&undelivered_messages);
port->TakePendingMessages(undelivered_messages);
break;
default:
return ERROR_PORT_STATE_UNEXPECTED;
}
}
ErasePort(port_ref.name());
if (was_initialized) {
DVLOG(2) << "Sending ObserveClosure from " << port_ref.name() << "@"
<< name_ << " to " << peer_port_name << "@" << peer_node_name;
delegate_->ForwardEvent(
peer_node_name,
std::make_unique<ObserveClosureEvent>(peer_port_name, port_ref.name(),
sequence_num, last_sequence_num));
for (const auto& message : undelivered_messages) {
for (size_t i = 0; i < message->num_ports(); ++i) {
PortRef ref;
if (GetPort(message->ports()[i], &ref) == OK)
ClosePort(ref);
}
}
}
return OK;
}
int Node::GetStatus(const PortRef& port_ref, PortStatus* port_status) {
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state != Port::kReceiving)
return ERROR_PORT_STATE_UNEXPECTED;
// TODO(sroettger): include messages pending sender verification here?
port_status->has_messages = port->message_queue.HasNextMessage();
port_status->receiving_messages = CanAcceptMoreMessages(port);
port_status->peer_closed = port->peer_closed;
port_status->peer_remote = port->peer_node_name != name_;
port_status->queued_message_count =
port->message_queue.queued_message_count();
port_status->queued_num_bytes = port->message_queue.queued_num_bytes();
port_status->unacknowledged_message_count =
port->next_sequence_num_to_send - port->last_sequence_num_acknowledged -
1;
return OK;
}
int Node::GetMessage(const PortRef& port_ref,
std::unique_ptr<UserMessageEvent>* message,
MessageFilter* filter) {
*message = nullptr;
DVLOG(4) << "GetMessage for " << port_ref.name() << "@" << name_;
NodeName peer_node_name;
ScopedEvent ack_event;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
// This could also be treated like the port being unknown since the
// embedder should no longer be referring to a port that has been sent.
if (port->state != Port::kReceiving)
return ERROR_PORT_STATE_UNEXPECTED;
// Let the embedder get messages until there are no more before reporting
// that the peer closed its end.
if (!CanAcceptMoreMessages(port))
return ERROR_PORT_PEER_CLOSED;
port->message_queue.GetNextMessage(message, filter);
if (*message &&
(*message)->sequence_num() == port->sequence_num_to_acknowledge) {
peer_node_name = port->peer_node_name;
ack_event = std::make_unique<UserMessageReadAckEvent>(
port->peer_port_name, port_ref.name(),
port->next_control_sequence_num_to_send++,
port->sequence_num_to_acknowledge);
}
if (*message) {
// Message will be passed to the user, no need to block the queue.
port->message_queue.MessageProcessed();
}
}
if (ack_event)
delegate_->ForwardEvent(peer_node_name, std::move(ack_event));
// Allow referenced ports to trigger PortStatusChanged calls.
if (*message) {
for (size_t i = 0; i < (*message)->num_ports(); ++i) {
PortRef new_port_ref;
int rv = GetPort((*message)->ports()[i], &new_port_ref);
DCHECK_EQ(OK, rv) << "Port " << new_port_ref.name() << "@" << name_
<< " does not exist!";
SinglePortLocker locker(&new_port_ref);
DCHECK_EQ(locker.port()->state, Port::kReceiving);
locker.port()->message_queue.set_signalable(true);
}
// The user may retransmit this message from another port. We reset the
// sequence number so that the message will get a new one if that happens.
(*message)->set_sequence_num(0);
}
return OK;
}
int Node::SendUserMessage(const PortRef& port_ref,
std::unique_ptr<UserMessageEvent> message) {
int rv = SendUserMessageInternal(port_ref, &message);
if (rv != OK) {
// If send failed, close all carried ports. Note that we're careful not to
// close the sending port itself if it happened to be one of the encoded
// ports (an invalid but possible condition.)
for (size_t i = 0; i < message->num_ports(); ++i) {
if (message->ports()[i] == port_ref.name())
continue;
PortRef port;
if (GetPort(message->ports()[i], &port) == OK)
ClosePort(port);
}
}
return rv;
}
int Node::SetAcknowledgeRequestInterval(
const PortRef& port_ref,
uint64_t sequence_num_acknowledge_interval) {
NodeName peer_node_name;
PortName peer_port_name;
uint64_t sequence_num_to_request_ack = 0;
uint64_t sequence_num = 0;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state != Port::kReceiving)
return ERROR_PORT_STATE_UNEXPECTED;
port->sequence_num_acknowledge_interval = sequence_num_acknowledge_interval;
if (!sequence_num_acknowledge_interval)
return OK;
peer_node_name = port->peer_node_name;
peer_port_name = port->peer_port_name;
sequence_num_to_request_ack = port->last_sequence_num_acknowledged +
sequence_num_acknowledge_interval;
sequence_num = port->next_control_sequence_num_to_send++;
}
delegate_->ForwardEvent(peer_node_name,
std::make_unique<UserMessageReadAckRequestEvent>(
peer_port_name, port_ref.name(), sequence_num,
sequence_num_to_request_ack));
return OK;
}
bool Node::IsEventFromPreviousPeer(const Event& event) {
switch (event.type()) {
case Event::Type::kUserMessage:
return true;
case Event::Type::kPortAccepted:
// PortAccepted is sent by the next peer
return false;
case Event::Type::kObserveProxy:
// ObserveProxy with an invalid port name is a broadcast event
return event.port_name() != kInvalidPortName;
case Event::Type::kObserveProxyAck:
return true;
case Event::Type::kObserveClosure:
return true;
case Event::Type::kMergePort:
// MergePort is not from the previous peer
return false;
case Event::Type::kUserMessageReadAckRequest:
return true;
case Event::Type::kUserMessageReadAck:
return true;
case Event::Type::kUpdatePreviousPeer:
return true;
default:
// No need to check unknown message types since AcceptPeer will return
// an error.
return false;
}
}
int Node::AcceptEventInternal(const PortRef& port_ref,
const NodeName& from_node,
ScopedEvent event) {
switch (event->type()) {
case Event::Type::kUserMessage:
return OnUserMessage(port_ref, from_node,
Event::Cast<UserMessageEvent>(&event));
case Event::Type::kPortAccepted:
return OnPortAccepted(port_ref, Event::Cast<PortAcceptedEvent>(&event));
case Event::Type::kObserveProxy:
return OnObserveProxy(port_ref, Event::Cast<ObserveProxyEvent>(&event));
case Event::Type::kObserveProxyAck:
return OnObserveProxyAck(port_ref,
Event::Cast<ObserveProxyAckEvent>(&event));
case Event::Type::kObserveClosure:
return OnObserveClosure(port_ref,
Event::Cast<ObserveClosureEvent>(&event));
case Event::Type::kMergePort:
return OnMergePort(port_ref, Event::Cast<MergePortEvent>(&event));
case Event::Type::kUserMessageReadAckRequest:
return OnUserMessageReadAckRequest(
port_ref, Event::Cast<UserMessageReadAckRequestEvent>(&event));
case Event::Type::kUserMessageReadAck:
return OnUserMessageReadAck(port_ref,
Event::Cast<UserMessageReadAckEvent>(&event));
case Event::Type::kUpdatePreviousPeer:
return OnUpdatePreviousPeer(port_ref,
Event::Cast<UpdatePreviousPeerEvent>(&event));
}
return OOPS(ERROR_NOT_IMPLEMENTED);
}
int Node::AcceptEvent(const NodeName& from_node, ScopedEvent event) {
PortRef port_ref;
GetPort(event->port_name(), &port_ref);
#ifndef MOJO_BACKWARDS_COMPAT
DVLOG(2) << "AcceptEvent type: " << event->type() << ", "
<< event->from_port() << "@" << from_node << " => "
<< port_ref.name() << "@" << name_
<< " seq nr: " << event->control_sequence_num() << " port valid? "
<< port_ref.is_valid();
if (!IsEventFromPreviousPeer(*event)) {
DCHECK_EQ(event->control_sequence_num(), kInvalidSequenceNum);
// Some events are not coming from the previous peer, e.g. broadcasts or
// PortAccepted events. No need to check the sequence number or sender.
return AcceptEventInternal(port_ref, from_node, std::move(event));
}
DCHECK_NE(event->control_sequence_num(), kInvalidSequenceNum);
if (!port_ref.is_valid()) {
// If we don't have a valid port, there's nothing for us to check. However,
// we pass the ref on to AcceptEventInternal to make sure there's no race
// where it becomes valid and we skipped the peer check.
return AcceptEventInternal(port_ref, from_node, std::move(event));
}
// Before processing the event, verify the sender and sequence number.
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (!port->IsNextEvent(from_node, *event)) {
DVLOG(2) << "Buffering event (type " << event->type()
<< "): " << event->from_port() << "@" << from_node << " => "
<< port_ref.name() << "@" << name_
<< " seq nr: " << event->control_sequence_num() << " / "
<< port->next_control_sequence_num_to_receive << ", want "
<< port->prev_port_name << "@" << port->prev_node_name;
port->BufferEvent(from_node, std::move(event));
return OK;
}
}
int ret = AcceptEventInternal(port_ref, from_node, std::move(event));
// More events might have been enqueued during processing.
while (true) {
ScopedEvent next_event;
NodeName next_from_node;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
// We always increment the control sequence number after we finished
// processing the event. That way we ensure that the events are handled
// in order without keeping a lock the whole time.
port->next_control_sequence_num_to_receive++;
port->NextEvent(&next_from_node, &next_event);
if (next_event) {
DVLOG(2) << "Handling buffered event (type " << next_event->type()
<< "): " << next_event->from_port() << "@" << next_from_node
<< " => " << port_ref.name() << "@" << name_
<< " seq nr: " << next_event->control_sequence_num() << " / "
<< port->next_control_sequence_num_to_receive;
}
}
if (!next_event)
break;
AcceptEventInternal(port_ref, next_from_node, std::move(next_event));
}
return ret;
#else
return AcceptEventInternal(port_ref, from_node, std::move(event));
#endif
}
int Node::MergePorts(const PortRef& port_ref,
const NodeName& destination_node_name,
const PortName& destination_port_name) {
PortName new_port_name;
Event::PortDescriptor new_port_descriptor;
PendingUpdatePreviousPeer pending_update_event{.from_port = port_ref.name()};
{
// Must be held for ConvertToProxy.
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock ports_locker(ports_lock_);
SinglePortLocker locker(&port_ref);
DVLOG(1) << "Sending MergePort from " << port_ref.name() << "@" << name_
<< " to " << destination_port_name << "@" << destination_node_name;
// Send the port-to-merge over to the destination node so it can be merged
// into the port cycle atomically there.
new_port_name = port_ref.name();
ConvertToProxy(locker.port(), destination_node_name, &new_port_name,
&new_port_descriptor, &pending_update_event);
}
#ifndef MOJO_BACKWARDS_COMPAT
delegate_->ForwardEvent(
pending_update_event.receiver,
std::make_unique<UpdatePreviousPeerEvent>(
pending_update_event.port, pending_update_event.from_port,
pending_update_event.sequence_num, pending_update_event.new_prev_node,
pending_update_event.new_prev_port));
#endif
if (new_port_descriptor.peer_node_name == name_ &&
destination_node_name != name_) {
// Ensure that the locally retained peer of the new proxy gets a status
// update so it notices that its peer is now remote.
PortRef local_peer;
if (GetPort(new_port_descriptor.peer_port_name, &local_peer) == OK)
delegate_->PortStatusChanged(local_peer);
}
delegate_->ForwardEvent(
destination_node_name,
std::make_unique<MergePortEvent>(destination_port_name, kInvalidPortName,
kInvalidSequenceNum, new_port_name,
new_port_descriptor));
return OK;
}
int Node::MergeLocalPorts(const PortRef& port0_ref, const PortRef& port1_ref) {
DVLOG(1) << "Merging local ports " << port0_ref.name() << "@" << name_
<< " and " << port1_ref.name() << "@" << name_;
return MergePortsInternal(port0_ref, port1_ref,
true /* allow_close_on_bad_state */);
}
int Node::LostConnectionToNode(const NodeName& node_name) {
// We can no longer send events to the given node. We also can't expect any
// PortAccepted events.
DVLOG(1) << "Observing lost connection from node " << name_ << " to node "
<< node_name;
DestroyAllPortsWithPeer(node_name, kInvalidPortName);
return OK;
}
int Node::OnUserMessage(const PortRef& port_ref,
const NodeName& from_node,
std::unique_ptr<UserMessageEvent> message) {
#if DCHECK_IS_ON()
std::ostringstream ports_buf;
for (size_t i = 0; i < message->num_ports(); ++i) {
if (i > 0)
ports_buf << ",";
ports_buf << message->ports()[i];
}
DVLOG(4) << "OnUserMessage " << message->sequence_num()
<< " [ports=" << ports_buf.str() << "] at " << message->port_name()
<< "@" << name_;
#endif
// Even if this port does not exist, cannot receive anymore messages or is
// buffering or proxying messages, we still need these ports to be bound to
// this node. When the message is forwarded, these ports will get transferred
// following the usual method. If the message cannot be accepted, then the
// newly bound ports will simply be closed.
if (from_node != name_) {
for (size_t i = 0; i < message->num_ports(); ++i) {
Event::PortDescriptor& descriptor = message->port_descriptors()[i];
int rv = AcceptPort(message->ports()[i], descriptor);
if (rv != OK)
return rv;
}
}
bool has_next_message = false;
bool message_accepted = false;
bool should_forward_messages = false;
if (port_ref.is_valid()) {
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
// Reject spurious messages if we've already received the last expected
// message.
if (CanAcceptMoreMessages(port)) {
message_accepted = true;
port->message_queue.AcceptMessage(std::move(message), &has_next_message);
if (port->state == Port::kBuffering) {
has_next_message = false;
} else if (port->state == Port::kProxying) {
has_next_message = false;
should_forward_messages = true;
}
}
}
if (should_forward_messages) {
int rv = ForwardUserMessagesFromProxy(port_ref);
if (rv != OK)
return rv;
TryRemoveProxy(port_ref);
}
if (!message_accepted) {
DVLOG(2) << "Message not accepted!\n";
// Close all newly accepted ports as they are effectively orphaned.
for (size_t i = 0; i < message->num_ports(); ++i) {
PortRef attached_port_ref;
if (GetPort(message->ports()[i], &attached_port_ref) == OK) {
ClosePort(attached_port_ref);
} else {
DLOG(WARNING) << "Cannot close non-existent port!\n";
}
}
} else if (has_next_message) {
delegate_->PortStatusChanged(port_ref);
}
return OK;
}
int Node::OnPortAccepted(const PortRef& port_ref,
std::unique_ptr<PortAcceptedEvent> event) {
if (!port_ref.is_valid())
return ERROR_PORT_UNKNOWN;
#if DCHECK_IS_ON()
{
SinglePortLocker locker(&port_ref);
DVLOG(2) << "PortAccepted at " << port_ref.name() << "@" << name_
<< " pointing to " << locker.port()->peer_port_name << "@"
<< locker.port()->peer_node_name;
}
#endif
return BeginProxying(port_ref);
}
int Node::OnObserveProxy(const PortRef& port_ref,
std::unique_ptr<ObserveProxyEvent> event) {
if (event->port_name() == kInvalidPortName) {
// An ObserveProxy with an invalid target port name is a broadcast used to
// inform ports when their peer (which was itself a proxy) has become
// defunct due to unexpected node disconnection.
//
// Receiving ports affected by this treat it as equivalent to peer closure.
// Proxies affected by this can be removed and will in turn broadcast their
// own death with a similar message.
DCHECK_EQ(event->proxy_target_node_name(), kInvalidNodeName);
DCHECK_EQ(event->proxy_target_port_name(), kInvalidPortName);
DestroyAllPortsWithPeer(event->proxy_node_name(), event->proxy_port_name());
return OK;
}
// The port may have already been closed locally, in which case the
// ObserveClosure message will contain the last_sequence_num field.
// We can then silently ignore this message.
if (!port_ref.is_valid()) {
DVLOG(1) << "ObserveProxy: " << event->port_name() << "@" << name_
<< " not found";
return OK;
}
DVLOG(2) << "ObserveProxy at " << port_ref.name() << "@" << name_
<< ", proxy at " << event->proxy_port_name() << "@"
<< event->proxy_node_name() << " pointing to "
<< event->proxy_target_port_name() << "@"
<< event->proxy_target_node_name();
bool peer_changed = false;
ScopedEvent event_to_forward;
NodeName event_target_node;
{
// Must be acquired for UpdatePortPeerAddress below.
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock ports_locker(ports_lock_);
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->peer_node_name == event->proxy_node_name() &&
port->peer_port_name == event->proxy_port_name()) {
if (port->state == Port::kReceiving) {
// Updating the port peer will reset the sequence num. Grab it now;
uint64_t sequence_num = port->next_control_sequence_num_to_send++;
UpdatePortPeerAddress(port_ref.name(), port,
event->proxy_target_node_name(),
event->proxy_target_port_name());
event_target_node = event->proxy_node_name();
event_to_forward = std::make_unique<ObserveProxyAckEvent>(
event->proxy_port_name(), port_ref.name(), sequence_num,
port->next_sequence_num_to_send - 1);
peer_changed = true;
DVLOG(2) << "Forwarding ObserveProxyAck from " << event->port_name()
<< "@" << name_ << " to " << event->proxy_port_name() << "@"
<< event_target_node;
} else {
// As a proxy ourselves, we don't know how to honor the ObserveProxy
// event or to populate the last_sequence_num field of ObserveProxyAck.
// Afterall, another port could be sending messages to our peer now
// that we've sent out our own ObserveProxy event. Instead, we will
// send an ObserveProxyAck indicating that the ObserveProxy event
// should be re-sent (last_sequence_num set to kInvalidSequenceNum).
// However, this has to be done after we are removed as a proxy.
// Otherwise, we might just find ourselves back here again, which
// would be akin to a busy loop.
DVLOG(2) << "Delaying ObserveProxyAck to " << event->proxy_port_name()
<< "@" << event->proxy_node_name();
port->send_on_proxy_removal =
std::make_unique<std::pair<NodeName, ScopedEvent>>(
event->proxy_node_name(),
std::make_unique<ObserveProxyAckEvent>(
event->proxy_port_name(), port_ref.name(),
kInvalidSequenceNum, kInvalidSequenceNum));
}
} else {
// Forward this event along to our peer. Eventually, it should find the
// port referring to the proxy.
event_target_node = port->peer_node_name;
event->set_port_name(port->peer_port_name);
event->set_from_port(port_ref.name());
event->set_control_sequence_num(
port->next_control_sequence_num_to_send++);
if (port->state == Port::kBuffering) {
port->control_message_queue.push({event_target_node, std::move(event)});
} else {
event_to_forward = std::move(event);
}
}
}
if (event_to_forward)
delegate_->ForwardEvent(event_target_node, std::move(event_to_forward));
if (peer_changed) {
// Re-send ack and/or ack requests, as the previous peer proxy may not have
// forwarded the previous request before it died.
MaybeResendAck(port_ref);
MaybeResendAckRequest(port_ref);
delegate_->PortStatusChanged(port_ref);
}
return OK;
}
int Node::OnObserveProxyAck(const PortRef& port_ref,
std::unique_ptr<ObserveProxyAckEvent> event) {
DVLOG(2) << "ObserveProxyAck at " << event->port_name() << "@" << name_
<< " (last_sequence_num=" << event->last_sequence_num() << ")";
if (!port_ref.is_valid())
return ERROR_PORT_UNKNOWN; // The port may have observed closure first.
bool try_remove_proxy_immediately;
bool erase_port = false;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state == Port::kProxying) {
// If the last sequence number is invalid, this is a signal that we need
// to retransmit the ObserveProxy event for this port rather than flagging
// the the proxy for removal ASAP.
try_remove_proxy_immediately =
event->last_sequence_num() != kInvalidSequenceNum;
if (try_remove_proxy_immediately) {
// We can now remove this port once we have received and forwarded the
// last message addressed to this port.
port->remove_proxy_on_last_message = true;
port->last_sequence_num_to_receive = event->last_sequence_num();
}
} else if (port->state == Port::kClosed) {
erase_port = true;
} else {
return OOPS(ERROR_PORT_STATE_UNEXPECTED);
}
}
if (erase_port) {
ErasePort(port_ref.name());
return OK;
}
if (try_remove_proxy_immediately)
TryRemoveProxy(port_ref);
else
InitiateProxyRemoval(port_ref);
return OK;
}
int Node::OnObserveClosure(const PortRef& port_ref,
std::unique_ptr<ObserveClosureEvent> event) {
// OK if the port doesn't exist, as it may have been closed already.
if (!port_ref.is_valid())
return OK;
// This message tells the port that it should no longer expect more messages
// beyond last_sequence_num. This message is forwarded along until we reach
// the receiving end, and this message serves as an equivalent to
// ObserveProxyAck.
bool notify_delegate = false;
NodeName peer_node_name;
bool try_remove_proxy = false;
bool erase_port = false;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
port->peer_closed = true;
port->last_sequence_num_to_receive = event->last_sequence_num();
DVLOG(2) << "ObserveClosure at " << port_ref.name() << "@" << name_
<< " (state=" << port->state << ") pointing to "
<< port->peer_port_name << "@" << port->peer_node_name
<< " (last_sequence_num=" << event->last_sequence_num() << ")";
// We always forward ObserveClosure, even beyond the receiving port which
// cares about it. This ensures that any dead-end proxies beyond that port
// are notified to remove themselves.
if (port->state == Port::kReceiving) {
notify_delegate = true;
// When forwarding along the other half of the port cycle, this will only
// reach dead-end proxies. Tell them we've sent our last message so they
// can go away.
//
// TODO: Repurposing ObserveClosure for this has the desired result but
// may be semantically confusing since the forwarding port is not actually
// closed. Consider replacing this with a new event type.
event->set_last_sequence_num(port->next_sequence_num_to_send - 1);
// Treat the closure as an acknowledge that all sent messages have been
// read from the other end.
port->last_sequence_num_acknowledged =
port->next_sequence_num_to_send - 1;
} else if (port->state == Port::kClosed) {
// This is the ack for a closed proxy port notification. Now it's fine to
// delete the port.
erase_port = true;
} else {
// We haven't yet reached the receiving peer of the closed port, so we'll
// forward the message along as-is.
// See about removing the port if it is a proxy as our peer won't be able
// to participate in proxy removal.
port->remove_proxy_on_last_message = true;
if (port->state == Port::kProxying)
try_remove_proxy = true;
}
DVLOG(2) << "Forwarding ObserveClosure from " << port_ref.name() << "@"
<< name_ << " to peer " << port->peer_port_name << "@"
<< port->peer_node_name
<< " (last_sequence_num=" << event->last_sequence_num() << ")";
event->set_port_name(port->peer_port_name);
event->set_from_port(port_ref.name());
event->set_control_sequence_num(port->next_control_sequence_num_to_send++);
peer_node_name = port->peer_node_name;
if (port->state == Port::kBuffering) {
port->control_message_queue.push({peer_node_name, std::move(event)});
}
}
if (try_remove_proxy)
TryRemoveProxy(port_ref);
if (erase_port)
ErasePort(port_ref.name());
if (event)
delegate_->ForwardEvent(peer_node_name, std::move(event));
if (notify_delegate)
delegate_->PortStatusChanged(port_ref);
return OK;
}
int Node::OnMergePort(const PortRef& port_ref,
std::unique_ptr<MergePortEvent> event) {
DVLOG(1) << "MergePort at " << port_ref.name() << "@" << name_
<< " merging with proxy " << event->new_port_name() << "@" << name_
<< " pointing to " << event->new_port_descriptor().peer_port_name
<< "@" << event->new_port_descriptor().peer_node_name
<< " referred by "
<< event->new_port_descriptor().referring_port_name << "@"
<< event->new_port_descriptor().referring_node_name;
// Accept the new port. This is now the receiving end of the other port cycle
// to be merged with ours. Note that we always attempt to accept the new port
// first as otherwise its peer receiving port could be left stranded
// indefinitely.
if (AcceptPort(event->new_port_name(), event->new_port_descriptor()) != OK) {
if (port_ref.is_valid())
ClosePort(port_ref);
return ERROR_PORT_STATE_UNEXPECTED;
}
PortRef new_port_ref;
GetPort(event->new_port_name(), &new_port_ref);
if (!port_ref.is_valid() && new_port_ref.is_valid()) {
ClosePort(new_port_ref);
return ERROR_PORT_UNKNOWN;
} else if (port_ref.is_valid() && !new_port_ref.is_valid()) {
ClosePort(port_ref);
return ERROR_PORT_UNKNOWN;
}
bool peer_allowed = true;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (!port->pending_merge_peer) {
LOG(ERROR) << "MergePort called on unexpected port: "
<< event->port_name();
peer_allowed = false;
} else {
port->pending_merge_peer = false;
}
}
if (!peer_allowed) {
ClosePort(port_ref);
return ERROR_PORT_STATE_UNEXPECTED;
}
return MergePortsInternal(port_ref, new_port_ref,
false /* allow_close_on_bad_state */);
}
int Node::OnUserMessageReadAckRequest(
const PortRef& port_ref,
std::unique_ptr<UserMessageReadAckRequestEvent> event) {
DVLOG(1) << "AckRequest " << port_ref.name() << "@" << name_ << " sequence "
<< event->sequence_num_to_acknowledge();
if (!port_ref.is_valid())
return ERROR_PORT_UNKNOWN;
NodeName peer_node_name;
std::unique_ptr<Event> event_to_send;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
peer_node_name = port->peer_node_name;
if (port->state == Port::kProxying) {
// Proxies simply forward the ack request to their peer.
event->set_port_name(port->peer_port_name);
event->set_from_port(port_ref.name());
event->set_control_sequence_num(
port->next_control_sequence_num_to_send++);
event_to_send = std::move(event);
} else {
uint64_t current_sequence_num =
port->message_queue.next_sequence_num() - 1;
// Either this is requesting an ack for a sequence number already read, or
// else for a sequence number that is yet to be read.
if (current_sequence_num >= event->sequence_num_to_acknowledge()) {
// If the current sequence number to read already exceeds the ack
// request, send an ack immediately.
event_to_send = std::make_unique<UserMessageReadAckEvent>(
port->peer_port_name, port_ref.name(),
port->next_control_sequence_num_to_send++, current_sequence_num);
if (port->state == Port::kBuffering) {
port->control_message_queue.push(
{peer_node_name, std::move(event_to_send)});
}
// This might be a late or duplicate acknowledge request, that's
// requesting acknowledge for an already read message. There may already
// have been a request for future reads, so take care not to back up
// the requested acknowledge counter.
if (current_sequence_num > port->sequence_num_to_acknowledge)
port->sequence_num_to_acknowledge = current_sequence_num;
} else {
// This is request to ack a sequence number that hasn't been read yet.
// The state of the port can either be that it already has a
// future-requested ack, or not. Because ack requests aren't guaranteed
// to arrive in order, store the earlier of the current queued request
// and the new one, if one was already requested.
bool has_queued_ack_request =
port->sequence_num_to_acknowledge > current_sequence_num;
if (!has_queued_ack_request ||
port->sequence_num_to_acknowledge >
event->sequence_num_to_acknowledge()) {
port->sequence_num_to_acknowledge =
event->sequence_num_to_acknowledge();
}
return OK;
}
}
}
if (event_to_send)
delegate_->ForwardEvent(peer_node_name, std::move(event_to_send));
return OK;
}
int Node::OnUserMessageReadAck(const PortRef& port_ref,
std::unique_ptr<UserMessageReadAckEvent> event) {
DVLOG(1) << "Acknowledge " << port_ref.name() << "@" << name_ << " sequence "
<< event->sequence_num_acknowledged();
NodeName peer_node_name;
ScopedEvent ack_request_event;
if (port_ref.is_valid()) {
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (event->sequence_num_acknowledged() >= port->next_sequence_num_to_send) {
// TODO(http://crbug.com/980952): This is a malformed event.
// This could return a new error "ERROR_MALFORMED_EVENT" which the
// delegate could use as a signal to drop the peer node.
return OK;
}
// Keep the largest acknowledge seen.
if (event->sequence_num_acknowledged() <=
port->last_sequence_num_acknowledged) {
// The acknowledge was late or a duplicate, it's safe to ignore it.
return OK;
}
port->last_sequence_num_acknowledged = event->sequence_num_acknowledged();
// Send another ack request if the interval is non-zero and the peer has
// not been closed.
if (port->sequence_num_acknowledge_interval && !port->peer_closed) {
peer_node_name = port->peer_node_name;
ack_request_event = std::make_unique<UserMessageReadAckRequestEvent>(
port->peer_port_name, port_ref.name(),
port->next_control_sequence_num_to_send++,
port->last_sequence_num_acknowledged +
port->sequence_num_acknowledge_interval);
DCHECK_NE(port->state, Port::kBuffering);
}
}
if (ack_request_event)
delegate_->ForwardEvent(peer_node_name, std::move(ack_request_event));
if (port_ref.is_valid())
delegate_->PortStatusChanged(port_ref);
return OK;
}
int Node::OnUpdatePreviousPeer(const PortRef& port_ref,
std::unique_ptr<UpdatePreviousPeerEvent> event) {
DVLOG(1) << "OnUpdatePreviousPeer port: " << event->port_name()
<< " changing to " << event->new_node_name()
<< ", port: " << event->from_port() << " => "
<< event->new_port_name();
if (!port_ref.is_valid()) {
return ERROR_PORT_UNKNOWN;
}
const NodeName& new_node_name = event->new_node_name();
const PortName& new_port_name = event->new_port_name();
DCHECK_NE(new_node_name, kInvalidNodeName);
DCHECK_NE(new_port_name, kInvalidPortName);
if (new_node_name == kInvalidNodeName || new_port_name == kInvalidPortName) {
return ERROR_PORT_STATE_UNEXPECTED;
}
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
port->prev_node_name = new_node_name;
port->prev_port_name = new_port_name;
// The sequence number will get incremented after this event has been
// handled.
port->next_control_sequence_num_to_receive = kInitialSequenceNum - 1;
}
return OK;
}
int Node::AddPortWithName(const PortName& port_name, scoped_refptr<Port> port) {
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock lock(ports_lock_);
if (port->peer_port_name != kInvalidPortName) {
DCHECK_NE(kInvalidNodeName, port->peer_node_name);
peer_port_maps_[port->peer_node_name][port->peer_port_name].emplace(
port_name, PortRef(port_name, port));
}
if (!ports_.emplace(port_name, std::move(port)).second)
return OOPS(ERROR_PORT_EXISTS); // Suggests a bad UUID generator.
DVLOG(2) << "Created port " << port_name << "@" << name_;
return OK;
}
void Node::ErasePort(const PortName& port_name) {
PortLocker::AssertNoPortsLockedOnCurrentThread();
scoped_refptr<Port> port;
{
base::AutoLock lock(ports_lock_);
auto it = ports_.find(port_name);
if (it == ports_.end())
return;
port = std::move(it->second);
ports_.erase(it);
RemoveFromPeerPortMap(port_name, port.get());
}
// NOTE: We are careful not to release the port's messages while holding any
// locks, since they may run arbitrary user code upon destruction.
std::vector<std::unique_ptr<UserMessageEvent>> messages;
{
PortRef port_ref(port_name, std::move(port));
SinglePortLocker locker(&port_ref);
locker.port()->message_queue.TakeAllMessages(&messages);
}
DVLOG(2) << "Deleted port " << port_name << "@" << name_;
}
int Node::SendUserMessageInternal(const PortRef& port_ref,
std::unique_ptr<UserMessageEvent>* message) {
std::unique_ptr<UserMessageEvent>& m = *message;
m->set_from_port(port_ref.name());
for (size_t i = 0; i < m->num_ports(); ++i) {
if (m->ports()[i] == port_ref.name())
return ERROR_PORT_CANNOT_SEND_SELF;
}
NodeName target_node;
int rv = PrepareToForwardUserMessage(port_ref, Port::kReceiving,
false /* ignore_closed_peer */, m.get(),
&target_node);
if (rv != OK)
return rv;
// Beyond this point there's no sense in returning anything but OK. Even if
// message forwarding or acceptance fails, there's nothing the embedder can
// do to recover. Assume that failure beyond this point must be treated as a
// transport failure.
DCHECK_NE(kInvalidNodeName, target_node);
if (target_node != name_) {
delegate_->ForwardEvent(target_node, std::move(m));
return OK;
}
int accept_result = AcceptEvent(name_, std::move(m));
if (accept_result != OK) {
// See comment above for why we don't return an error in this case.
DVLOG(2) << "AcceptEvent failed: " << accept_result;
}
return OK;
}
int Node::MergePortsInternal(const PortRef& port0_ref,
const PortRef& port1_ref,
bool allow_close_on_bad_state) {
const PortRef* port_refs[2] = {&port0_ref, &port1_ref};
PendingUpdatePreviousPeer pending_update_events[2];
uint64_t original_sequence_number[2];
{
// Needed to swap peer map entries below.
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::ReleasableAutoLock ports_locker(&ports_lock_);
std::optional<PortLocker> locker(std::in_place, port_refs, 2);
auto* port0 = locker->GetPort(port0_ref);
auto* port1 = locker->GetPort(port1_ref);
// There are several conditions which must be met before we'll consider
// merging two ports:
//
// - They must both be in the kReceiving state
// - They must not be each other's peer
// - They must have never sent a user message
//
// If any of these criteria are not met, we fail early.
if (port0->state != Port::kReceiving || port1->state != Port::kReceiving ||
(port0->peer_node_name == name_ &&
port0->peer_port_name == port1_ref.name()) ||
(port1->peer_node_name == name_ &&
port1->peer_port_name == port0_ref.name()) ||
port0->next_sequence_num_to_send != kInitialSequenceNum ||
port1->next_sequence_num_to_send != kInitialSequenceNum) {
// On failure, we only close a port if it was at least properly in the
// |kReceiving| state. This avoids getting the system in an inconsistent
// state by e.g. closing a proxy abruptly.
//
// Note that we must release the port locks before closing ports.
const bool close_port0 =
port0->state == Port::kReceiving || allow_close_on_bad_state;
const bool close_port1 =
port1->state == Port::kReceiving || allow_close_on_bad_state;
locker.reset();
ports_locker.Release();
if (close_port0)
ClosePort(port0_ref);
if (close_port1)
ClosePort(port1_ref);
return ERROR_PORT_STATE_UNEXPECTED;
}
pending_update_events[0] = {
.receiver = port0->peer_node_name,
.port = port0->peer_port_name,
.from_port = port0_ref.name(),
.sequence_num = port0->next_control_sequence_num_to_send++,
.new_prev_node = name_,
.new_prev_port = port1_ref.name()};
pending_update_events[1] = {
.receiver = port1->peer_node_name,
.port = port1->peer_port_name,
.from_port = port1_ref.name(),
.sequence_num = port1->next_control_sequence_num_to_send++,
.new_prev_node = name_,
.new_prev_port = port0_ref.name()};
// Swap the ports' peer information and switch them both to proxying mode.
SwapPortPeers(port0_ref.name(), port0, port1_ref.name(), port1);
port0->state = Port::kProxying;
port1->state = Port::kProxying;
original_sequence_number[0] = port0->next_control_sequence_num_to_send;
original_sequence_number[1] = port1->next_control_sequence_num_to_send;
port0->next_control_sequence_num_to_send = kInitialSequenceNum;
port1->next_control_sequence_num_to_send = kInitialSequenceNum;
if (port0->peer_closed)
port0->remove_proxy_on_last_message = true;
if (port1->peer_closed)
port1->remove_proxy_on_last_message = true;
}
// Flush any queued messages from the new proxies and, if successful, complete
// the merge by initiating proxy removals.
if (ForwardUserMessagesFromProxy(port0_ref) == OK &&
ForwardUserMessagesFromProxy(port1_ref) == OK) {
#ifndef MOJO_BACKWARDS_COMPAT
// Send the prev peer updates out after the forwarding the user messages
// succeeded. Otherwise, we won't be able to restore the previous state
// below.
for (const auto& pending_update_event : pending_update_events) {
delegate_->ForwardEvent(
pending_update_event.receiver,
std::make_unique<UpdatePreviousPeerEvent>(
pending_update_event.port, pending_update_event.from_port,
pending_update_event.sequence_num,
pending_update_event.new_prev_node,
pending_update_event.new_prev_port));
}
#endif
for (const auto* const port_ref : port_refs) {
bool try_remove_proxy_immediately = false;
ScopedEvent closure_event;
NodeName closure_event_target_node;
{
SinglePortLocker locker(port_ref);
auto* port = locker.port();
DCHECK_EQ(port->state, Port::kProxying);
try_remove_proxy_immediately = port->remove_proxy_on_last_message;
if (try_remove_proxy_immediately || port->peer_closed) {
// If either end of the port cycle is closed, we propagate an
// ObserveClosure event.
closure_event_target_node = port->peer_node_name;
closure_event = std::make_unique<ObserveClosureEvent>(
port->peer_port_name, port_ref->name(),
port->next_control_sequence_num_to_send++,
port->last_sequence_num_to_receive);
}
}
if (try_remove_proxy_immediately)
TryRemoveProxy(*port_ref);
else
InitiateProxyRemoval(*port_ref);
if (closure_event) {
delegate_->ForwardEvent(closure_event_target_node,
std::move(closure_event));
}
}
return OK;
}
// If we failed to forward proxied messages, we keep the system in a
// consistent state by undoing the peer swap and closing the ports.
{
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock ports_locker(ports_lock_);
PortLocker locker(port_refs, 2);
auto* port0 = locker.GetPort(port0_ref);
auto* port1 = locker.GetPort(port1_ref);
SwapPortPeers(port0_ref.name(), port0, port1_ref.name(), port1);
port0->remove_proxy_on_last_message = false;
port1->remove_proxy_on_last_message = false;
DCHECK_EQ(Port::kProxying, port0->state);
DCHECK_EQ(Port::kProxying, port1->state);
port0->state = Port::kReceiving;
port1->state = Port::kReceiving;
port0->next_control_sequence_num_to_send = original_sequence_number[0];
port1->next_control_sequence_num_to_send = original_sequence_number[1];
}
ClosePort(port0_ref);
ClosePort(port1_ref);
return ERROR_PORT_STATE_UNEXPECTED;
}
void Node::ConvertToProxy(Port* port,
const NodeName& to_node_name,
PortName* port_name,
Event::PortDescriptor* port_descriptor,
PendingUpdatePreviousPeer* pending_update) {
port->AssertLockAcquired();
PortName local_port_name = *port_name;
PortName new_port_name;
GenerateRandomPortName(&new_port_name);
pending_update->receiver = port->peer_node_name;
pending_update->port = port->peer_port_name;
pending_update->sequence_num = port->next_control_sequence_num_to_send++;
pending_update->new_prev_node = to_node_name;
pending_update->new_prev_port = new_port_name;
// Make sure we don't send messages to the new peer until after we know it
// exists. In the meantime, just buffer messages locally.
DCHECK_EQ(port->state, Port::kReceiving);
port->state = Port::kBuffering;
// If we already know our peer is closed, we already know this proxy can
// be removed once it receives and forwards its last expected message.
if (port->peer_closed)
port->remove_proxy_on_last_message = true;
*port_name = new_port_name;
port_descriptor->peer_node_name = port->peer_node_name;
port_descriptor->peer_port_name = port->peer_port_name;
port_descriptor->referring_node_name = name_;
port_descriptor->referring_port_name = local_port_name;
port_descriptor->next_sequence_num_to_send = port->next_sequence_num_to_send;
port_descriptor->next_sequence_num_to_receive =
port->message_queue.next_sequence_num();
port_descriptor->last_sequence_num_to_receive =
port->last_sequence_num_to_receive;
port_descriptor->peer_closed = port->peer_closed;
memset(port_descriptor->padding, 0, sizeof(port_descriptor->padding));
// Configure the local port to point to the new port.
UpdatePortPeerAddress(local_port_name, port, to_node_name, new_port_name);
}
int Node::AcceptPort(const PortName& port_name,
const Event::PortDescriptor& port_descriptor) {
scoped_refptr<Port> port =
base::MakeRefCounted<Port>(port_descriptor.next_sequence_num_to_send,
port_descriptor.next_sequence_num_to_receive);
port->state = Port::kReceiving;
port->peer_node_name = port_descriptor.peer_node_name;
port->peer_port_name = port_descriptor.peer_port_name;
port->next_control_sequence_num_to_send = kInitialSequenceNum;
port->next_control_sequence_num_to_receive = kInitialSequenceNum;
port->prev_node_name = port_descriptor.referring_node_name;
port->prev_port_name = port_descriptor.referring_port_name;
port->last_sequence_num_to_receive =
port_descriptor.last_sequence_num_to_receive;
port->peer_closed = port_descriptor.peer_closed;
DVLOG(2) << "Accepting port " << port_name
<< " [peer_closed=" << port->peer_closed
<< "; last_sequence_num_to_receive="
<< port->last_sequence_num_to_receive << "]";
// A newly accepted port is not signalable until the message referencing the
// new port finds its way to the consumer (see GetMessage).
port->message_queue.set_signalable(false);
int rv = AddPortWithName(port_name, std::move(port));
if (rv != OK)
return rv;
// Allow referring port to forward messages.
delegate_->ForwardEvent(port_descriptor.referring_node_name,
std::make_unique<PortAcceptedEvent>(
port_descriptor.referring_port_name,
kInvalidPortName, kInvalidSequenceNum));
return OK;
}
int Node::PrepareToForwardUserMessage(const PortRef& forwarding_port_ref,
Port::State expected_port_state,
bool ignore_closed_peer,
UserMessageEvent* message,
NodeName* forward_to_node) {
bool target_is_remote = false;
base::queue<PendingUpdatePreviousPeer> peer_update_events;
for (;;) {
NodeName target_node_name;
{
SinglePortLocker locker(&forwarding_port_ref);
target_node_name = locker.port()->peer_node_name;
}
// NOTE: This may call out to arbitrary user code, so it's important to call
// it only while no port locks are held on the calling thread.
if (target_node_name != name_) {
if (!message->NotifyWillBeRoutedExternally()) {
LOG(ERROR) << "NotifyWillBeRoutedExternally failed unexpectedly.";
return ERROR_PORT_STATE_UNEXPECTED;
}
}
// Must be held because ConvertToProxy needs to update |peer_port_maps_|.
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock ports_locker(ports_lock_);
// Simultaneously lock the forwarding port as well as all attached ports.
absl::InlinedVector<PortRef, 4> attached_port_refs;
absl::InlinedVector<const PortRef*, 5> ports_to_lock;
attached_port_refs.resize(message->num_ports());
ports_to_lock.resize(message->num_ports() + 1);
ports_to_lock[0] = &forwarding_port_ref;
for (size_t i = 0; i < message->num_ports(); ++i) {
const PortName& attached_port_name = message->ports()[i];
auto iter = ports_.find(attached_port_name);
CHECK(iter != ports_.end(), base::NotFatalUntil::M130);
attached_port_refs[i] = PortRef(attached_port_name, iter->second);
ports_to_lock[i + 1] = &attached_port_refs[i];
}
PortLocker locker(ports_to_lock.data(), ports_to_lock.size());
auto* forwarding_port = locker.GetPort(forwarding_port_ref);
if (forwarding_port->peer_node_name != target_node_name) {
// The target node has already changed since we last held the lock.
if (target_node_name == name_) {
// If the target node was previously this local node, we need to restart
// the loop, since that means we may now route the message externally.
continue;
}
target_node_name = forwarding_port->peer_node_name;
}
target_is_remote = target_node_name != name_;
if (forwarding_port->state != expected_port_state)
return ERROR_PORT_STATE_UNEXPECTED;
if (forwarding_port->peer_closed && !ignore_closed_peer)
return ERROR_PORT_PEER_CLOSED;
// Messages may already have a sequence number if they're being forwarded by
// a proxy. Otherwise, use the next outgoing sequence number.
if (message->sequence_num() == 0)
message->set_sequence_num(forwarding_port->next_sequence_num_to_send++);
#if DCHECK_IS_ON()
std::ostringstream ports_buf;
for (size_t i = 0; i < message->num_ports(); ++i) {
if (i > 0)
ports_buf << ",";
ports_buf << message->ports()[i];
}
#endif
if (message->num_ports() > 0) {
// Sanity check to make sure we can actually send all the attached ports.
// They must all be in the |kReceiving| state and must not be the sender's
// own peer.
DCHECK_EQ(message->num_ports(), attached_port_refs.size());
for (size_t i = 0; i < message->num_ports(); ++i) {
auto* attached_port = locker.GetPort(attached_port_refs[i]);
int error = OK;
if (attached_port->state != Port::kReceiving) {
error = ERROR_PORT_STATE_UNEXPECTED;
} else if (attached_port_refs[i].name() ==
forwarding_port->peer_port_name) {
error = ERROR_PORT_CANNOT_SEND_PEER;
}
if (error != OK) {
// Not going to send. Backpedal on the sequence number.
forwarding_port->next_sequence_num_to_send--;
return error;
}
}
if (target_is_remote) {
// We only bother to proxy and rewrite ports in the event if it's
// going to be routed to an external node. This substantially reduces
// the amount of port churn in the system, as many port-carrying
// events are routed at least 1 or 2 intra-node hops before (if ever)
// being routed externally.
Event::PortDescriptor* port_descriptors = message->port_descriptors();
for (size_t i = 0; i < message->num_ports(); ++i) {
auto* port = locker.GetPort(attached_port_refs[i]);
PendingUpdatePreviousPeer update_event = {
.from_port = attached_port_refs[i].name()};
ConvertToProxy(port, target_node_name, message->ports() + i,
port_descriptors + i, &update_event);
peer_update_events.push(update_event);
}
}
}
#if DCHECK_IS_ON()
DVLOG(4) << "Sending message " << message->sequence_num()
<< " [ports=" << ports_buf.str() << "]"
<< " from " << forwarding_port_ref.name() << "@" << name_ << " to "
<< forwarding_port->peer_port_name << "@" << target_node_name;
#endif
*forward_to_node = target_node_name;
message->set_port_name(forwarding_port->peer_port_name);
message->set_from_port(forwarding_port_ref.name());
message->set_control_sequence_num(
forwarding_port->next_control_sequence_num_to_send++);
break;
}
#ifndef MOJO_BACKWARDS_COMPAT
while (!peer_update_events.empty()) {
auto pending_update_event = peer_update_events.front();
peer_update_events.pop();
delegate_->ForwardEvent(
pending_update_event.receiver,
std::make_unique<UpdatePreviousPeerEvent>(
pending_update_event.port, pending_update_event.from_port,
pending_update_event.sequence_num,
pending_update_event.new_prev_node,
pending_update_event.new_prev_port));
}
#endif
if (target_is_remote) {
for (size_t i = 0; i < message->num_ports(); ++i) {
// For any ports that were converted to proxies above, make sure their
// prior local peer (if applicable) receives a status update so it can be
// made aware of its peer's location.
const Event::PortDescriptor& descriptor = message->port_descriptors()[i];
if (descriptor.peer_node_name == name_) {
PortRef local_peer;
if (GetPort(descriptor.peer_port_name, &local_peer) == OK)
delegate_->PortStatusChanged(local_peer);
}
}
}
return OK;
}
int Node::BeginProxying(const PortRef& port_ref) {
base::queue<std::pair<NodeName, ScopedEvent>> control_message_queue;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state != Port::kBuffering)
return OOPS(ERROR_PORT_STATE_UNEXPECTED);
port->state = Port::kProxying;
std::swap(port->control_message_queue, control_message_queue);
}
while (!control_message_queue.empty()) {
auto node_event_pair = std::move(control_message_queue.front());
control_message_queue.pop();
delegate_->ForwardEvent(node_event_pair.first,
std::move(node_event_pair.second));
}
int rv = ForwardUserMessagesFromProxy(port_ref);
if (rv != OK)
return rv;
// Forward any pending acknowledge request.
MaybeForwardAckRequest(port_ref);
bool try_remove_proxy_immediately;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state != Port::kProxying)
return OOPS(ERROR_PORT_STATE_UNEXPECTED);
try_remove_proxy_immediately = port->remove_proxy_on_last_message;
}
if (try_remove_proxy_immediately) {
TryRemoveProxy(port_ref);
} else {
InitiateProxyRemoval(port_ref);
}
return OK;
}
int Node::ForwardUserMessagesFromProxy(const PortRef& port_ref) {
for (;;) {
// NOTE: We forward messages in sequential order here so that we maintain
// the message queue's notion of next sequence number. That's useful for the
// proxy removal process as we can tell when this port has seen all of the
// messages it is expected to see.
std::unique_ptr<UserMessageEvent> message;
{
SinglePortLocker locker(&port_ref);
locker.port()->message_queue.GetNextMessage(&message, nullptr);
if (!message)
break;
}
NodeName target_node;
int rv = PrepareToForwardUserMessage(port_ref, Port::kProxying,
true /* ignore_closed_peer */,
message.get(), &target_node);
{
// Mark the message as processed after we ran PrepareToForwardUserMessage.
// This is important to prevent another thread from deleting the port
// before we grabbed a sequence number for the message.
SinglePortLocker locker(&port_ref);
locker.port()->message_queue.MessageProcessed();
}
if (rv != OK)
return rv;
delegate_->ForwardEvent(target_node, std::move(message));
}
return OK;
}
void Node::InitiateProxyRemoval(const PortRef& port_ref) {
NodeName peer_node_name;
PortName peer_port_name;
uint64_t sequence_num;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state == Port::kClosed)
return;
peer_node_name = port->peer_node_name;
peer_port_name = port->peer_port_name;
sequence_num = port->next_control_sequence_num_to_send++;
DCHECK_EQ(port->state, Port::kProxying);
}
// To remove this node, we start by notifying the connected graph that we are
// a proxy. This allows whatever port is referencing this node to skip it.
// Eventually, this node will receive ObserveProxyAck (or ObserveClosure if
// the peer was closed in the meantime).
delegate_->ForwardEvent(
peer_node_name, std::make_unique<ObserveProxyEvent>(
peer_port_name, port_ref.name(), sequence_num, name_,
port_ref.name(), peer_node_name, peer_port_name));
}
void Node::TryRemoveProxy(const PortRef& port_ref) {
bool should_erase = false;
NodeName removal_target_node;
ScopedEvent removal_event;
PendingUpdatePreviousPeer pending_update_event;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state == Port::kClosed)
return;
DCHECK_EQ(port->state, Port::kProxying);
// Make sure we have seen ObserveProxyAck before removing the port.
if (!port->remove_proxy_on_last_message)
return;
if (!CanAcceptMoreMessages(port)) {
DCHECK_EQ(port->message_queue.queued_message_count(), 0lu);
should_erase = true;
if (port->send_on_proxy_removal) {
removal_target_node = port->send_on_proxy_removal->first;
removal_event = std::move(port->send_on_proxy_removal->second);
if (removal_event) {
removal_event->set_control_sequence_num(
port->next_control_sequence_num_to_send++);
DCHECK_EQ(removal_target_node, port->peer_node_name);
DCHECK_EQ(removal_event->port_name(), port->peer_port_name);
}
}
// Tell the peer_node to accept messages from prev_node from now.
pending_update_event = {
.receiver = port->peer_node_name,
.port = port->peer_port_name,
.from_port = port_ref.name(),
.sequence_num = port->next_control_sequence_num_to_send++,
.new_prev_node = port->prev_node_name,
.new_prev_port = port->prev_port_name};
} else {
DVLOG(2) << "Cannot remove port " << port_ref.name() << "@" << name_
<< " now; waiting for more messages";
}
}
if (should_erase) {
#ifndef MOJO_BACKWARDS_COMPAT
delegate_->ForwardEvent(
pending_update_event.receiver,
std::make_unique<UpdatePreviousPeerEvent>(
pending_update_event.port, pending_update_event.from_port,
pending_update_event.sequence_num,
pending_update_event.new_prev_node,
pending_update_event.new_prev_port));
#endif
ErasePort(port_ref.name());
}
if (removal_event)
delegate_->ForwardEvent(removal_target_node, std::move(removal_event));
}
void Node::DestroyAllPortsWithPeer(const NodeName& node_name,
const PortName& port_name) {
// Wipes out all ports whose peer node matches |node_name| and whose peer port
// matches |port_name|. If |port_name| is |kInvalidPortName|, only the peer
// node is matched.
std::vector<PortRef> ports_to_notify;
std::vector<PortName> dead_proxies_to_broadcast;
std::vector<std::unique_ptr<UserMessageEvent>> undelivered_messages;
ScopedEvent closure_event;
NodeName closure_event_target_node;
{
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock ports_lock(ports_lock_);
auto node_peer_port_map_iter = peer_port_maps_.find(node_name);
if (node_peer_port_map_iter == peer_port_maps_.end())
return;
auto& node_peer_port_map = node_peer_port_map_iter->second;
auto peer_ports_begin = node_peer_port_map.begin();
auto peer_ports_end = node_peer_port_map.end();
if (port_name != kInvalidPortName) {
// If |port_name| is given, we limit the set of local ports to the ones
// with that specific port as their peer.
peer_ports_begin = node_peer_port_map.find(port_name);
if (peer_ports_begin == node_peer_port_map.end())
return;
peer_ports_end = peer_ports_begin;
++peer_ports_end;
}
for (auto peer_port_iter = peer_ports_begin;
peer_port_iter != peer_ports_end; ++peer_port_iter) {
auto& local_ports = peer_port_iter->second;
// NOTE: This inner loop almost always has only one element. There are
// relatively short-lived cases where more than one local port points to
// the same peer, and this only happens when extra ports are bypassed
// proxies waiting to be torn down.
for (auto local_port_iter = local_ports.begin();
local_port_iter != local_ports.end(); ++local_port_iter) {
auto& local_port_ref = local_port_iter->second;
SinglePortLocker locker(&local_port_ref);
auto* port = locker.port();
if (port_name != kInvalidPortName) {
// If this is a targeted observe dead proxy event, send out an
// ObserveClosure to acknowledge it.
closure_event_target_node = port->peer_node_name;
closure_event = std::make_unique<ObserveClosureEvent>(
port->peer_port_name, local_port_ref.name(),
port->next_control_sequence_num_to_send++,
port->last_sequence_num_to_receive);
}
if (!port->peer_closed) {
// Treat this as immediate peer closure. It's an exceptional
// condition akin to a broken pipe, so we don't care about losing
// messages.
port->peer_closed = true;
port->peer_lost_unexpectedly = true;
if (port->state == Port::kReceiving)
ports_to_notify.push_back(local_port_ref);
}
// We don't expect to forward any further messages, and we don't
// expect to receive a Port{Accepted,Rejected} event. Because we're
// a proxy with no active peer, we cannot use the normal proxy removal
// procedure of forward-propagating an ObserveProxy. Instead we
// broadcast our own death so it can be back-propagated. This is
// inefficient but rare.
if (port->state == Port::kBuffering || port->state == Port::kProxying) {
port->state = Port::kClosed;
dead_proxies_to_broadcast.push_back(local_port_ref.name());
std::vector<std::unique_ptr<UserMessageEvent>> messages;
port->message_queue.TakeAllMessages(&messages);
port->TakePendingMessages(messages);
for (auto& message : messages)
undelivered_messages.emplace_back(std::move(message));
}
}
}
}
#ifdef MOJO_BACKWARDS_COMPAT
for (const auto& proxy_name : dead_proxies_to_broadcast) {
ErasePort(proxy_name);
DVLOG(2) << "Forcibly deleted port " << proxy_name << "@" << name_;
}
#endif
if (closure_event) {
delegate_->ForwardEvent(closure_event_target_node,
std::move(closure_event));
}
// Wake up any receiving ports who have just observed simulated peer closure.
for (const auto& port : ports_to_notify)
delegate_->PortStatusChanged(port);
for (const auto& proxy_name : dead_proxies_to_broadcast) {
// Broadcast an event signifying that this proxy is no longer functioning.
delegate_->BroadcastEvent(std::make_unique<ObserveProxyEvent>(
kInvalidPortName, kInvalidPortName, kInvalidSequenceNum, name_,
proxy_name, kInvalidNodeName, kInvalidPortName));
// Also process death locally since the port that points this closed one
// could be on the current node.
// Note: Although this is recursive, only a single port is involved which
// limits the expected branching to 1.
DestroyAllPortsWithPeer(name_, proxy_name);
}
// Close any ports referenced by undelivered messages.
for (const auto& message : undelivered_messages) {
for (size_t i = 0; i < message->num_ports(); ++i) {
PortRef ref;
if (GetPort(message->ports()[i], &ref) == OK)
ClosePort(ref);
}
}
}
void Node::UpdatePortPeerAddress(const PortName& local_port_name,
Port* local_port,
const NodeName& new_peer_node,
const PortName& new_peer_port) {
ports_lock_.AssertAcquired();
local_port->AssertLockAcquired();
RemoveFromPeerPortMap(local_port_name, local_port);
local_port->peer_node_name = new_peer_node;
local_port->peer_port_name = new_peer_port;
local_port->next_control_sequence_num_to_send = kInitialSequenceNum;
if (new_peer_port != kInvalidPortName) {
peer_port_maps_[new_peer_node][new_peer_port].emplace(
local_port_name,
PortRef(local_port_name, base::WrapRefCounted<Port>(local_port)));
}
}
void Node::RemoveFromPeerPortMap(const PortName& local_port_name,
Port* local_port) {
if (local_port->peer_port_name == kInvalidPortName)
return;
auto node_iter = peer_port_maps_.find(local_port->peer_node_name);
if (node_iter == peer_port_maps_.end())
return;
auto& node_peer_port_map = node_iter->second;
auto ports_iter = node_peer_port_map.find(local_port->peer_port_name);
if (ports_iter == node_peer_port_map.end())
return;
auto& local_ports_with_this_peer = ports_iter->second;
local_ports_with_this_peer.erase(local_port_name);
if (local_ports_with_this_peer.empty())
node_peer_port_map.erase(ports_iter);
if (node_peer_port_map.empty())
peer_port_maps_.erase(node_iter);
}
void Node::SwapPortPeers(const PortName& port0_name,
Port* port0,
const PortName& port1_name,
Port* port1) {
ports_lock_.AssertAcquired();
port0->AssertLockAcquired();
port1->AssertLockAcquired();
auto& peer0_ports =
peer_port_maps_[port0->peer_node_name][port0->peer_port_name];
auto& peer1_ports =
peer_port_maps_[port1->peer_node_name][port1->peer_port_name];
peer0_ports.erase(port0_name);
peer1_ports.erase(port1_name);
peer0_ports.emplace(port1_name,
PortRef(port1_name, base::WrapRefCounted<Port>(port1)));
peer1_ports.emplace(port0_name,
PortRef(port0_name, base::WrapRefCounted<Port>(port0)));
std::swap(port0->peer_node_name, port1->peer_node_name);
std::swap(port0->peer_port_name, port1->peer_port_name);
}
void Node::MaybeResendAckRequest(const PortRef& port_ref) {
NodeName peer_node_name;
ScopedEvent ack_request_event;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state != Port::kReceiving)
return;
if (!port->sequence_num_acknowledge_interval)
return;
peer_node_name = port->peer_node_name;
ack_request_event = std::make_unique<UserMessageReadAckRequestEvent>(
port->peer_port_name, port_ref.name(),
port->next_control_sequence_num_to_send++,
port->last_sequence_num_acknowledged +
port->sequence_num_acknowledge_interval);
}
delegate_->ForwardEvent(peer_node_name, std::move(ack_request_event));
}
void Node::MaybeForwardAckRequest(const PortRef& port_ref) {
NodeName peer_node_name;
ScopedEvent ack_request_event;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state != Port::kProxying)
return;
if (!port->sequence_num_to_acknowledge)
return;
peer_node_name = port->peer_node_name;
ack_request_event = std::make_unique<UserMessageReadAckRequestEvent>(
port->peer_port_name, port_ref.name(),
port->next_control_sequence_num_to_send++,
port->sequence_num_to_acknowledge);
port->sequence_num_to_acknowledge = 0;
}
delegate_->ForwardEvent(peer_node_name, std::move(ack_request_event));
}
void Node::MaybeResendAck(const PortRef& port_ref) {
NodeName peer_node_name;
ScopedEvent ack_event;
{
SinglePortLocker locker(&port_ref);
auto* port = locker.port();
if (port->state != Port::kReceiving)
return;
uint64_t last_sequence_num_read =
port->message_queue.next_sequence_num() - 1;
if (!port->sequence_num_to_acknowledge || !last_sequence_num_read)
return;
peer_node_name = port->peer_node_name;
ack_event = std::make_unique<UserMessageReadAckEvent>(
port->peer_port_name, port_ref.name(),
port->next_control_sequence_num_to_send++, last_sequence_num_read);
}
delegate_->ForwardEvent(peer_node_name, std::move(ack_event));
}
Node::DelegateHolder::DelegateHolder(Node* node, NodeDelegate* delegate)
: node_(node), delegate_(delegate) {
DCHECK(node_);
}
Node::DelegateHolder::~DelegateHolder() = default;
#if DCHECK_IS_ON()
void Node::DelegateHolder::EnsureSafeDelegateAccess() const {
PortLocker::AssertNoPortsLockedOnCurrentThread();
base::AutoLock lock(node_->ports_lock_);
}
#endif
} // namespace ports
} // namespace core
} // namespace mojo